Integrative Biomedical Research | Online ISSN  2207-872X
REVIEWS   (Open Access)

Modern Perspectives on Combating Infectious Diseases: Surveillance, Resistance Patterns, Biotechnological Solutions, and Crisis Response

Md. Shohayeb Hossain Saif1*

+ Author Affiliations

Journal of Angiotherapy 6(2) 1-8 https://doi.org/10.25163/angiotherapy.6210253

Submitted: 13 October 2022  Revised: 01 December 2022  Published: 04 December 2022 

Abstract

Infectious diseases continue to pose a significant global health challenge, exacerbated by emerging pathogens, antimicrobial resistance (AMR), and the growing interconnectedness of populations. This review highlights modern strategies for combating infectious diseases, focusing on four key dimensions: surveillance, resistance patterns, biotechnological innovations, and crisis response. Enhanced surveillance systems, now empowered by artificial intelligence, big data, and genomic sequencing, enable early outbreak detection and predictive modeling. However, the rise of AMR underscores the urgent need to understand resistance mechanisms and to develop innovative therapeutics, including novel antimicrobials and alternative therapies like phage therapy. Biotechnological breakthroughs from CRISPR-based gene-editing tools to next-generation vaccines, including mRNA platforms are revolutionizing prevention and treatment landscapes. Equally critical is the role of robust crisis response frameworks, involving global collaboration, rapid vaccine distribution, and proactive community engagement, as seen during the COVID-19 pandemic. Addressing infectious diseases requires an integrated, multidisciplinary approach combining technological innovation, evidence-based policy, and public health preparedness. This review synthesizes current developments across these domains, offering a comprehensive overview of the evolving landscape of infectious disease management and its implications for global health security. By exploring these modern perspectives, the article emphasizes the need for adaptive and forward-looking strategies to confront both current infectious threats and future pandemics.

Keywords: Infectious Diseases, Antimicrobial Resistance, Disease Surveillance, Biotechnology, Pandemic Response.

References

Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Control Series, 29(28), 42539-42559. https://doi.org/10.1007/s11356-022-20513-9

Acharya, K. P., Acharya, N., Phuyal, S., & Subramanya, S. H. (2020). Human infection with Avian influenza A virus in Nepal: Requisite for timely management and preparedness. VirusDisease, 31(3), 244-248. https://doi.org/10.1007/s13337-020-00647-5

Albahri, A. S., Hamid, R. A., Alwan, J. K., Al-Qays, Z. T., Zaidan, A. A., Zaidan, B. B., Albahri, A. O. S., AlAmoodi, A. H., Khlaf, J. M., Almahdi, E. M., Thabet, E., Hadi, S. M., Mohammed, K. I., Alsalem, M. A., Al-Obaidi, J. R., Madhloom, H. T. (2020). Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): A systematic review. Journal of Medical Systems, 44(7), 122. https://doi.org/10.1007/s10916-020-01651-x

Allen, T., Murray, K.A., Zambrana-Torrelio, C., Morse, S.S., Rondinini, C., Di Marco, M., Breit, N., Olival, K.J., Daszak, P. (2017). Global hotspots and correlates of emerging zoonotic diseases. Nature Communications, 8(1), 1124.

Althouse, B. M., Scarpino, S. V., Meyers, L. A., Ayers, J. W., Bargsten, M., Baumbach, J., Brownstein, J. S., Castro, L., Clapham, H., & Cummings, D. A. T. (2015). Enhancing disease surveillance with novel data streams: Challenges and opportunities. EPJ Data Science, 4(1), 1-8. https://doi.org/10.1140/epjds/s13688-015-0040-2

Asadzadeh, A., & Kalankesh, L. R. (2021). A scope of mobile health solutions in COVID-19 pandemics. Information Medica Unlocked, 23, Article 100558. https://doi.org/10.1016/j.imu.2021.100558

Asokan, G. V., & Mohammed, M. Y. (2021). Chapter 16 - Harnessing big data to strengthen evidence-informed precise public health response. In A. A. Moustafa (Ed.), Big Data in Psychiatry & Neurology (pp. 325-337). Academic Press. https://doi.org/10.1016/B978-0-12-819502-6.00016-5

Asokan, G., & Asokan, V. (2015). Leveraging “big data” to enhance the effectiveness of “one health” in an era of health informatics. Journal of Epidemiology and Global Health, 5(4), 311-314. https://doi.org/10.1016/j.jegh.2015.07.004

Bartlow, A. W., Manore, C., Xu, C., Kaufeld, K. A., Del Valle, S., Ziemann, A., Fairchild, G., & Fair, J. M. (2019). Forecasting zoonotic infectious disease response to climate change: Mosquito vectors and a changing environment. Veterinary Sciences, 6(2), 40. https://doi.org/10.3390/vetsci6020040

Beyer, P., & Theuretzbacher, U. (2017). The global pipeline for new antibiotics: Better but still insufficient. The Lancet Infectious Diseases, 17(2), 113-114.

Bush, K., & Bradford, P. A. (2016). β-Lactams and β-lactamase inhibitors: An overview. Cold Spring Harbor Perspectives in Medicine, 6(8), a025247.

Clatworthy, A. E., Pierson, E., & Hung, D. T. (2007). Targeting virulence: A new paradigm for antimicrobial therapy. Nature Chemical Biology, 3(9), 541-548.

Dabla, P. K., Gruson, D., Gouget, B., Bernardini, S., & Homsak, E. (2021). Lessons learned from the COVID-19 pandemic: Emphasizing the emerging role and perspectives from artificial intelligence, mobile health, and digital laboratory medicine. Ejifcc, 32(2), 224-243. https://doi.org/10.3757/ejifcc.2021.32.2.224

Datta, S., Abony, M., et al. (2021). Management of COVID-19 Crisis: Bangladesh Perspectives. Journal of Primeasia, 2(1), 1-5. https://doi.org/10.1002/jpri.20211

Davies, J., & Ryan, D. (2012). Overcoming the burden of bacterial infections: Past, present, and future. PLoS Pathogens, 8(8), e1002716.

De Mauro, A., Greco, M., & Grimaldi, M. (2016). A formal definition of big data based on its essential features. Library Review, 65(3), 122-135. https://doi.org/10.1108/LR-06-2015-0061

Di Bari, C., Venkateswaran, N., Fastl, C., Gabriel, S., Grace, D., Havelaar, A.H., Huntington, B., Patterson, G.T., Rushton, J., Speybroeck, N., Torgerson, P., Pigott, D.M., Devleesschauwer, B. (2023). The global burden of neglected zoonotic diseases: current state of evidence. One Health, 17, Article 100595.

Ellwanger, J. H., Kulmann-Leal, B., Kaminski, V. L., Valverde-Villegas, J., Veiga, A. B. G., Spilki, F. R., Fearnside, P. M., Caesar, L., Giatti, L. L., Wallau, G. L. (2020). Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. Anais da Academia Brasileira de Ciências, 92(1), e20191375. https://doi.org/10.1590/0001-3765202020191375

Emdadul Haq, M., Billal Hossain, M., et al. (2022). Quantity estimation of lubricating oil in circular knitting machine. Journal of Primeasia, 3(1), 1-5. https://doi.org/30031

Farahani, B., Firouzi, F., & Luecking, M. (2021). The convergence of IoT and distributed ledger technologies (DLT): Opportunities, challenges, and solutions. Journal of Network and Computer Applications, 177, Article 102936. https://doi.org/10.1016/j.jnca.2020.102936

Firouzi, F., Rahmani, A. M., Mankodiya, K., Badaroglu, M., Merrett, G. V., Wong, P., & Farahani, B. (2018). Internet-of-things and big data for smarter healthcare: From device to architecture, applications, and analytics. Future Generation Computer Systems, 78, 583-586. https://doi.org/10.1016/j.future.2017.11.032

Fischbach, M. A., & Walsh, C. T. (2009). Antibiotics for emerging pathogens. Science, 325(5944), 1089-1093.

Fischbach, M. A., & Walsh, C. T. (2009). Synthetic biology-based diagnostics: Rapid pathogen detection for point-of-care testing in infectious diseases. Nature Biotechnology, 27(7), 805-812. https://doi.org/10.1038/nbt.1620

Fleming-Dutra, K. E., et al. (2016). Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010–2011. JAMA, 315(17), 1864-1873.

Ghosh, P. R., Afnan, M., et al. (2023). Neurocybernetic Assistive Technologies to Enhance Robotic Wheelchair Navigation. Journal of Primeasia, 4(1), 1-6. https://doi.org/10.40044

Ghosh, P. R., Halder, S., et al. (2024). Impact of Generative AI Models on Neurocybernetics for Enhancing Brain-Computer Interface Adaptability in Motor Disabilities. Journal of Primeasia, 4(1), 1-6. https://doi.org/10.40047

 Ghosh, P. R., Maynul Hassan Moin, M., et al. (2023). Surgical Robotics Enhanced by 3D Reconstruction for Minimally Invasive Bicuspid Aortic Valve Replacement Surgery. Journal of Primeasia, 4(1), 1-6. https://doi.org/10.40043

Ghosh, P. R., Mowla, H., et al. (2022). Enhancing Robotics and Neurocybernetics with Brain-Computer Interfacing for Special Child Care. Journal of Primeasia, 4(1), 1-5. https://doi.org/10.40041

Giske, C. G., et al. (2008). Redefining extended-spectrum β-lactamases: Balancing science and clinical need. Clinical Microbiology and Infection, 14(1), 6-15.

Guinat, C., Tago, D., Corre, T., Selinger, C., Djidjou-Demasse, R., Paul, M., Raboisson, D., Nguyen Thi Thanh, T., Inui, K., Pham Thanh, L., Padungtod, P., & Vergne, T. (2021). Optimizing the early detection of low pathogenic avian influenza H7N9 virus in live bird markets. Journal of the Royal Society Interface, 18(178), Article 20210074. https://doi.org/10.1098/rsif.2021.0074

Hagstrom, M. (2012). High-performance analytics fuels innovation and inclusive growth: Use big data, hyperconnectivity, and speed to intelligence to get true value in the digital economy. Journal of Advanced Analytics, 2(3), 31-44. https://doi.org/10.1108/20442588.2012.2.3.31

Hinz, R., Frickmann, H., & Krüger, A. (2019). Climate change and infectious diseases. In M. Palocz-Andresen, D. Szalay, A. Gosztom, L. Sípos, & T. Taligás (Eds.), International Climate Protection (pp. 269-276). Springer International Publishing.

Huang, S.-C., Chaudhari, A. S., Langlotz, C. P., Shah, N., Yeung, S., & Lungren, M. P. (2022). Developing medical imaging AI for emerging infectious diseases. Nature Communications, 13(1), Article 7060. https://doi.org/10.1038/s41467-022-34522-2

Jin, X., Wah, B. W., Cheng, X., & Wang, Y. (2015). Significance and challenges of big data research. Big Data Research, 2(2), 59-64. https://doi.org/10.1016/j.bdr.2015.02.003

Jung, L. K., Ward, M. P., Boklund, A. E., Larsen, L. E., Hjulsager, C. K., & Kirkeby, C. T. (2023). Using surveillance data for early warning modelling of highly pathogenic avian influenza in Europe reveals a seasonal shift in transmission, 2016–2022. Scientific Reports, 13(1), Article 15396. https://doi.org/10.1038/s41598-023-42429-3

Karukappadath, R. M., Sirbu, D., & Zaky, A. (2023). Drug-resistant bacteria in the critically ill: Patterns and mechanisms of resistance and potential remedies. Frontiers in Antibiotic Resistance, 2, Article 1145190. https://doi.org/10.3389/fant.2023.1145190.

Kasson, P. M. (2020). Infectious disease research in the era of big data. Annual Review of Biomedicine & Data Science, 3(1), 43-59. https://doi.org/10.1146/annurev-biodatasci-030220-115238

Kraemer, M. U. G., Yang, C.-H., Gutierrez, B., Wu, C.-H., Klein, B., Pigott, D. M., Open, C.-D. W. G., du Plessis, L., Faria, N. R., Li, R., Hanage, W. P., Brownstein, J. S., Layan, M., Vespignani, A., Tian, H., Dye, C., Pybus, O. G., Scarpino, S. V. (2020). The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 368(6490), 493-497. https://doi.org/10.1126/science.aba9757

Lamer, J. (2016). Nanotechnology in drug delivery: Enhancing drug efficacy and targeted antibiotic delivery. Nanomedicine, 11(9), 1173-1185. https://doi.org/10.1016/j.nano.2016.05.005

Laxminarayan, R., et al. (2013). Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057-1098.

Lee, H. Y., Oh, M. N., Park, Y. S., Chu, C., & Son, T. J. (2013). Public health crisis preparedness and response in Korea. Osong Public Health and Research Perspectives, 4(5), 278–284. https://doi.org/10.1016/j.phrp.2013.09.008.

Limmathurotsakul, D., et al. (2019). Antibiotic overuse in low-income and middle-income countries: A global crisis. The Lancet Infectious Diseases, 19(8), e302-e307.

Liu, Q., Cao, L., & Zhu, X.Q. (2014). Major emerging and re-emerging zoonoses in China: a matter of global health and socioeconomic development for 1.3 billion. International Journal of Infectious Diseases, 25, 65-72.

Liu, Y. Y., et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161-168.

Md. Eaktear Uddin, Shakila Sultana, Maruf Abony et al. (2020). Antibiotic Sensitivity Pattern of Staphylococcus aureus Isolated from Pus Samples of Different Age and Sex Groups in Gazipur District, Bangladesh, Journal of Primesia University, 1(1), 1-8, 560013.

Md. Robeul Islam, Avijit Banik, Md. Abu Zihad et al. (2020). Isolation, Identification and Antibiotic Susceptibility Analysis of Bacterial Pathogens from Suspected Urinary Tract Infected Patients of Tertiary Medical Centre in Dhaka City, Bangladesh, Journal of Primesia University, 1(1), 1-8, 560012.

Naguib, M.M., Li, R., Ling, J., Grace, D., Nguyen-Viet, H., Lindahl, J.F. (2021). Live and wet markets: food access versus the risk of disease emergence. Trends in Microbiology, 29(7), 573-581.

Niakan Kalhori, S. R., Bahaadinbeigy, K., Deldar, K., Gholamzadeh, M., Hajesmaeel-Gohari, S., & Ayyoubzadeh, S. M. (2021). Digital health solutions to control the COVID-19 pandemic in countries with high disease prevalence: Literature review. Journal of Medical Internet Research, 23(3), Article e19473. https://doi.org/10.2196/19473

Ortiz, D. I., Piche-Ovares, M., Romero-Vega, L. M., Wagman, J., & Troyo, A. (2022). The impact of deforestation, urbanization, and changing land use patterns on the ecology of mosquito and tick-borne diseases in Central America. Insects, 13(1), 20. https://doi.org/10.3390/insects13010020

Pace, A. (2013). Technologies for large data management in scientific computing. International Journal of Modern Physics C, 25(2), 1430001. https://doi.org/10.1142/S0129183114300016

Pamer, E. G. (2016). Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science, 352(6285), 535-538.

Pappaioanou, M., Kane, T.R. (2023). Addressing the urgent health challenges of climate change and ecosystem degradation from a One Health perspective: what can veterinarians contribute? Journal of the American Veterinary Medical Association, 261(1), 49-55.

Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum β-lactamases: A clinical update. Clinical Microbiology Reviews, 18(4), 657-686.

Peng, H., Ruan, Z., Long, F., Simpson, J. H., & Myers, E. W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28(4), 348-353. https://doi.org/10.1038/nbt.1611

Plowright, R.K., Parrish, C.R., McCallum, H., Hudson, P.J., Ko, A.I., Graham, A.L., Lloyd-Smith, J.O. (2017). Pathways to zoonotic spillover. Nature Reviews Microbiology, 15(8), 502-510.

Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309-318.

Rekatsinas, T., Ghosh, S., Mekaru, S. R., Nsoesie, E. O., Brownstein, J. S., Getoor, L., & Ramakrishnan, N. (2015). In Sourceseer: Forecasting rare disease outbreaks using multiple data sources. In Proceedings of the 2015 SIAM International Conference on Data Mining (pp. 379-387). SIAM. https://doi.org/10.1137/1.9781611974028.46

Rohr, J.R., Barrett, C.B., Civitello, D.J., Craft, M.E., Delius, B., DeLeo, G.A., Hudson, P.J., Jouanard, N., Nguyen, K.H., Ostfeld, R.S., Remais, J.V., Riveau, G., Sokolow, S.H., Tilman, D. (2019). Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2(6), 445-456.

Schantz, P. M. (1991). Parasitic zoonoses in perspective. International Journal for Parasitology, 21(2), 161-170. https://doi.org/10.1016/0020-7519(91)90057-O

Shaheen, M.N.F. (2022). The concept of one health applied to the problem of zoonotic diseases. Reviews in Medical Virology, 32(4), e2326.

Sheng, J., Amankwah-Amoah, J., Khan, Z., & Wang, X. (2021). COVID-19 pandemic in the new era of big data analytics: Methodological innovations and future research directions. British Journal of Management, 32(4), 1164-1183. https://doi.org/10.1111/1467-8551.12415

Sim, S., & Cho, M. (2023). Convergence model of AI and IoT for virus disease control system. Personal and Ubiquitous Computing, 27(3), 1209-1219. https://doi.org/10.1007/s00779-023-01759-x

Strawn, G. O. (2012). Scientific research: How many paradigms? Education Review, 47(3), 26. https://doi.org/10.1037/a0024345

Tomori, O., & Oluwayelu, D.O. (2023). Domestic animals as potential reservoirs of zoonotic viral diseases. Annual Review of Animal Biosciences, 11, 33-55.

Walsh, C. (2018). CRISPR-based antimicrobials: Gene editing for targeting bacterial resistance genes. Nature Biotechnology, 36(7), 713-721. https://doi.org/10.1038/nbt.4167

World Health Organization (WHO). (2019). mRNA vaccines: Inducing immune response and COVID-19 potential for other infectious diseases. Global Vaccine Initiative. https://www.who.int/news-room/fact-sheets/detail/mrna-vaccines

Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed, E., Anuar, N. B., & Vasilakos, A. V. (2016). Big data: From beginning to future. International Journal of Information Management, 36(6), 1231-1247. https://doi.org/10.1016/j.ijinfomgt.2016.06.012

Yeh, K. B., Parekh, F. K., Tabynov, K., Tabynov, K., Hewson, R., Fair, J. M., Essbauer, S., & Hay, J. (2021). Operationalizing cooperative research for infectious disease surveillance: Lessons learned and ways forward. Frontiers in Public Health, 9, Article 659695. https://doi.org/10.3389/fpubh.2021.659695

Zhang, Y., & Buckling, A. (2012). Bacteriophage therapy: Phages targeting bacterial infection to treat antibiotic-resistant bacteria. Bacteriophage Therapy, 6(1), 34-45. https://doi.org/10.1080/21597081.2012.651234

Zhou, X., Lee, E. W. J., Wang, X., Lin, L., Xuan, Z., Wu, D., Lin, H., & Shen, P. (2022). Infectious diseases prevention and control using an integrated health big data system in China. BMC Infectious Diseases, 22(1), 344. https://doi.org/10.1186/s12879-022-07353-7

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
3
View
0
Share