Drone-Assisted AED Delivery in Out-of-Hospital Cardiac Arrest: A Systematic Review of Response Time, Feasibility, and Cost-Effectiveness
Salman Ghazi Al-Faridi 1*, Saqer Tawfiq Saeed M 1, Ahmed Saleh Alghamdi 1, Aseel hasson alhasson 1, Faisal Khashman Alosiml 1, Zaid Kalaf T Alshammari 1, Hussain Mutreb H Alshammari 1, Sultan Mesfer Faraj Alsahmah 1, Fawaz nasser dhaifallah Alotaibi 1, Salman Ghazi Al-Faridi 1, Osama Mohammed Aloufi 1, Tawfiq Saeed M Saqer 1, Tariq Abdulaziz Al-Falih 1, Awadh Awaadh Alotaibi 1
Integrative Biomedical Research (Former Journal of Angiotherapy) 8(9) 1-7 https://doi.org/10.25163/angiotherapy.8910271
Submitted: 01 July 2024 Revised: 13 September 2024 Published: 15 September 2024
Abstract
Out-of-hospital cardiac arrest (OHCA) is an important health problem, as survival tends to be low because defibrillation happens too late in many cases. Drones carrying Automated External Defibrillators (AEDs) can be a new method to improve PAD by cutting down on response times. This review summarizes findings from 26 studies included up to 2023, downloaded from Medline, EMBASE, Cochrane CENTRAL, PsycINFO, and Scopus. It was found that using drones to deliver AEDs was often faster than standard ambulance service, with drones reaching the site before the medical team 64% of the time and being there 1:52 minutes sooner on average. In cities, regulations and environmental issues prevent benefits from being obvious. Better placement of drone bases can boost coverage by almost 90.3%, and drone networks are more cost-effective because each quality-adjusted life year costs less than standard limits. Still, weather, authorities, and the lack of understanding bystanders have about AEDs call for special improvements. Experts suggest using practical tests, teaching people about drones well, relaxing regulations, and making technological progress to ensure that drones are more reliable. Drone technology can change the way OHCA is handled, but overcoming obstacles is required for more widespread operation.
Keywords: Cardiac arrest, drone delivery, an automated external defibrillator, public access defibrillation, emergency medical services.
References
Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
Bækgaard, J. S., Viereck, S., Møller, T. P., Ersbøll, A. K., Lippert, F., & Folke, F. (2017). The effects of public access defibrillation on survival after out-of-hospital cardiac arrest: A systematic review of observational studies. Circulation, 136(10), 954–965. https://doi.org/10.1161/CIRCULATIONAHA.117.029067
Baldi, E., Auricchio, A., Klersy, C., Burkart, R., Benvenuti, C., Vanetta, C., & Bärtschi, J. (2021). Out-of-hospital cardiac arrests and mortality in Swiss Cantons with high and low COVID-19 incidence: A nationwide analysis. Resuscitation Plus, 6, Article 100105. https://doi.org/10.1016/j.resplu.2021.100105
Baldi, E., Grieco, N. B., Ristagno, G., Alihodžic, H., Canon, V., Birkun, A., Cresta, R., Cimpoesu, D., Clarens, C., Ganter, J., & others. (2021). The automated external defibrillator: Heterogeneity of legislation, mapping and use across Europe. New insights from the ENSURE study. Journal of Clinical Medicine, 10(21), Article 5018. https://doi.org/10.3390/jcm10215018
Bauer, J., Moormann, D., Strametz, R., & Groneberg, D. A. (2021). Development of unmanned aerial vehicle (UAV) networks delivering early defibrillation for out-of-hospital cardiac arrests (OHCA) in areas lacking timely access to emergency medical services (EMS) in Germany: A comparative economic study. BMJ Open, 11(4), Article e043791. https://doi.org/10.1136/bmjopen-2020-043791
Baumgarten, M. C., Röper, J., Hahnenkamp, K., & Thies, K.-C. (2022). Drones delivering automated external defibrillators—Integrating unmanned aerial systems into the chain of survival: A simulation study in rural Germany. Resuscitation, 172, 139–145. https://doi.org/10.1016/j.resuscitation.2022.01.025
Berg, K. M., Cheng, A., Panchal, A. R., Topjian, A. A., Aziz, K., Bhanji, F., Bigham, B. L., Hirsch, K. G., Hoover, A. V., Kurz, M. C., & others. (2020). Part 7: Systems of care: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation, 142(16_suppl_2), S580–S604. https://doi.org/10.1161/CIR.0000000000000899
Bogle, B. M., Rosamond, W. D., Snyder, K. T., & Zegre-Hemsey, J. K. (2019). The case for drone-assisted emergency response to cardiac arrest: An optimized statewide deployment approach. North Carolina Medical Journal, 80(4), 204–212. https://doi.org/10.18043/ncm.80.4.204
Boutilier, J. J. (2019). Emergency medical services response optimization (Doctoral dissertation, University of Toronto, Toronto, ON, Canada). https://tspace.library.utoronto.ca/handle/1807/95894
Cheskes, S., McLeod, S. L., Nolan, M., Snobelen, P., Vaillancourt, C., Brooks, S. C., Dainty, K. N., Chan, T. C. Y., & Drennan, I. R. (2020). Improving access to automated external defibrillators in rural and remote settings: A drone delivery feasibility study. Journal of the American Heart Association, 9(14), Article e016687. https://doi.org/10.1161/JAHA.120.016687
Chin, Y. H., Yaow, C. Y. L., Teoh, S. E., Foo, M. Z. Q., Luo, N., Graves, N., Ong, M. E. H., & Ho, A. F. W. (2022). Long-term outcomes after out-of-hospital cardiac arrest: A systematic review and meta-analysis. Resuscitation, 171, 15–29. https://doi.org/10.1016/j.resuscitation.2021.12.032
Choi, D. S., Hong, K. J., Shin, S. D., Lee, C.-G., Kim, T. H., Cho, Y., Song, K. J., Ro, Y. S., Park, J. H., & Kim, K. H. (2021). Effect of topography and weather on delivery of automatic electrical defibrillator by drone for out-of-hospital cardiac arrest. Scientific Reports, 11, Article 24195. https://doi.org/10.1038/s41598-021-03407-0
Chu, J., Leung, K. B., Snobelen, P., Nevils, G., Drennan, I. R., Cheskes, S., & Chan, T. C. (2021). Machine learning-based dispatch of drone-delivered defibrillators for out-of-hospital cardiac arrest. Resuscitation, 162, 120–127. https://doi.org/10.1016/j.resuscitation.2021.02.028
Claesson, A., Bäckman, A., Ringh, M., Svensson, L., Nordberg, P., Djärv, T., & Hollenberg, J. (2017). Time to delivery of an automated external defibrillator using a drone for simulated out-of-hospital cardiac arrests vs emergency medical services. JAMA, 317(22), 2332–2334. https://doi.org/10.1001/jama.2017.3957
Claesson, A., Fredman, D., Svensson, L., Ringh, M., Hollenberg, J., Nordberg, P., Rosenqvist, M., Djarv, T., Österberg, S., Lennartsson, J., & others. (2016). Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 24, Article 124. https://doi.org/10.1186/s13049-016-0313-5
Deakin, C. D., Anfield, S., & Hodgetts, G. A. (2018). Underutilisation of public access defibrillation is related to retrieval distance and time-dependent availability. Heart, 104(16), 1339–1343. https://doi.org/10.1136/heartjnl-2017-312598
Delhomme, C., Njeim, M., Varlet, E., Pechmajou, L., Benameur, N., Cassan, P., Derkenne, C., Jost, D., Lamhaut, L., Marijon, E., & others. (2019). Automated external defibrillator use in out-of-hospital cardiac arrest: Current limitations and solutions. Archives of Cardiovascular Diseases, 112(3), 217–222. https://doi.org/10.1016/j.acvd.2018.11.011
Derkenne, C., Jost, D., De L’Espinay, A. M., Corpet, P., Frattini, B., Hong, V., Lemoine, F., Jouffroy, R., Roquet, F., Marijon, E., & others. (2021). Automatic external defibrillator provided by unmanned aerial vehicle (drone) in Greater Paris: A real world-based simulation. Resuscitation, 162, 259–265. https://doi.org/10.1016/j.resuscitation.2021.03.001
El Sibai, R. H., Bachir, R. H., & El Sayed, M. J. (2021). Seasonal variation in incidence and outcomes of out of hospital cardiac arrest: A retrospective national observational study in the United States. Medicine, 100(17), Article e25643. https://doi.org/10.1097/MD.0000000000025643
Glick, T. B., Figliozzi, M., & Unnikrishnan, A. (2020). A case study of the reliability of time-sensitive drone deliveries. In Proceedings of the 8th International Conference on Information Systems, Logistics and Supply Chain: Interconnected Supply Chains in an Era of Innovation, ILS 2020 (pp. 1–10). Austin, TX, USA.
Kaneko, H., Hatanaka, T., Nagase, A., Marukawa, S., & Sakamoto, T. (2018). Abstract 197: What limits the use of AEDs by bystanders? Circulation, 138(Suppl_1), A197. https://doi.org/10.1161/circ.138.suppl_1.197
Lancaster, G., & Herrmann, J. (2021). Simulating cardiac arrest events to evaluate novel emergency response systems. IISE Transactions on Healthcare Systems Engineering, 11(1), 38–50. https://doi.org/10.1080/24725579.2020.1846544
Lee, S. G. W., Park, J. H., Ro, Y. S., Hong, K. J., Song, K. J., & Shin, S. D. (2021). Time to first defibrillation and survival outcomes of out-of-hospital cardiac arrest with refractory ventricular fibrillation. American Journal of Emergency Medicine, 40, 96–102. https://doi.org/10.1016/j.ajem.2020.12.010
Lim, S. L., Smith, K., Dyson, K., Chan, S. P., Earnest, A., Nair, R., Bernard, S., Leong, B. S., Arulanandam, S., Ng, Y. Y., & others. (2020). Incidence and outcomes of out-of-hospital cardiac arrest in Singapore and Victoria: A collaborative study. Journal of the American Heart Association, 9(21), Article e015981. https://doi.org/10.1161/JAHA.120.015981
Lim, Z. J., Reddy, M. P., Afroz, A., Billah, B., Shekar, K., & Subramaniam, A. (2020). Incidence and outcome of out-of-hospital cardiac arrests in the COVID-19 era: A systematic review and meta-analysis. Resuscitation, 157, 248–258. https://doi.org/10.1016/j.resuscitation.2020.10.025
Mackle, C., Bond, R., Torney, H., Mcbride, R., Mclaughlin, J., Finlay, D., Biglarbeigi, P., Brisk, R., Harvey, A., & Mc Eneaney, D. (2020). A data-driven simulator for the strategic positioning of aerial ambulance drones reaching out-of-hospital cardiac arrests: A genetic algorithmic approach. IEEE Journal of Translational Engineering in Health and Medicine, 8, Article 1900410. https://doi.org/10.1109/JTEHM.2020.2987737
Masuda, Y., Teoh, S. E., Yeo, J. W., Tan, D. J. H., Jimian, D. L., Lim, S. L., Ong, M. E. H., Blewer, A. L., & Ho, A. F. W. (2022). Variation in community and ambulance care processes for out-of-hospital cardiac arrest during the COVID-19 pandemic: A systematic review and meta-analysis. Scientific Reports, 12, Article 800. https://doi.org/10.1038/s41598-021-04749-9
Pulver, A., & Wei, R. (2018). Optimizing the spatial location of medical drones. Applied Geography, 90, 9–16. https://doi.org/10.1016/j.apgeog.2017.11.006
Pulver, A., Wei, R., & Mann, C. (2016). Locating AED enabled medical drones to enhance cardiac arrest response times. Prehospital Emergency Care, 20(3), 378–389. https://doi.org/10.3109/10903127.2015.1115932
Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., & Rinner, B. (2010). Networked UAVs as aerial sensor network for disaster management applications. Elektrotechnik und Informationstechnik, 127(3), 56–63. https://doi.org/10.1007/s00502-010-0717-4
Rachunok, B., Mayorga, M., Saydam, C., & Rajagopalan, H. (2016). UAVs provide life-saving medical care. In Proceedings of the 2016 Industrial and Systems Engineering Research Conference (pp. 1–10). Anaheim, CA, USA.
Rees, N., Howitt, J., Breyley, N., Geoghegan, P., & Powel, C. (2021). A simulation study of drone delivery of automated external defibrillator (AED) in out of hospital cardiac arrest (OHCA) in the UK. PLoS ONE, 16(11), Article e0259555. https://doi.org/10.1371/journal.pone.0259555
Ringh, M., Hollenberg, J., Palsgaard-Moeller, T., Svensson, L., Rosenqvist, M., Lippert, F., Wissenberg, M., Hansen, C. M., Claesson, A., Viereck, S., & others. (2018). The challenges and possibilities of public access defibrillation. Journal of Internal Medicine, 283(3), 238–256. https://doi.org/10.1111/joim.12730
Rosamond, W. D., Johnson, A., Bogle, B., Arnold, E., Cunningham, C., Picinich, M., Williams, B., & Zegre-Hemsey, J. (2020). Aerial drone versus ground search for delivery of an automated external defibrillator (AED) for out-of-hospital cardiac arrest: A comparison of elapsed time and bystander experience in a community setting. Circulation, 141(Suppl_1), A53. https://doi.org/10.1161/circ.141.suppl_1.53
Sanfridsson, J., Sparrevik, J., Hollenberg, J., Nordberg, P., Djärv, T., Ringh, M., Svensson, L., Forsberg, S., Nord, A., Andersson-Hagiwara, M., & others. (2019). Drone delivery of an automated external defibrillator—A mixed method simulation study of bystander experience. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 27, Article 40. https://doi.org/10.1186/s13049-019-0622-6
Sasson, C., Rogers, M. A., Dahl, J., & Kellermann, A. L. (2010). Predictors of survival from out-of-hospital cardiac arrest: A systematic review and meta-analysis. Circulation: Cardiovascular Quality and Outcomes, 3(1), 63–81. https://doi.org/10.1161/CIRCOUTCOMES.109.889576
Schierbeck, S., Hollenberg, J., Nord, A., Svensson, L., Nordberg, P., Ringh, M., Forsberg, S., Lundgren, P., Axelsson, C., & Claesson, A. (2022). Automated external defibrillators delivered by drones to patients with suspected out-of-hospital cardiac arrest. European Heart Journal, 43(15), 1478–1487. https://doi.org/10.1093/eurheartj/ehab498
Schierbeck, S., Nord, A., Svensson, L., Rawshani, A., Hollenberg, J., Ringh, M., Forsberg, S., Nordberg, P., Hilding, F., & Claesson, A. (2021). National coverage of out-of-hospital cardiac arrests using automated external defibrillator-equipped drones—A geographical information system analysis. Resuscitation, 163, 136–145. https://doi.org/10.1016/j.resuscitation.2021.04.009
Sedig, K., Seaton, M., Drennan, I., Cheskes, S., & Dainty, K. (2020). “Drones are a great idea! What is an AED?” Novel insights from a qualitative study on public perception of using drones to deliver automatic external defibrillators. Resuscitation Plus, 4, Article 100033. https://doi.org/10.1016/j.resplu.2020.100033
Smith, C. M., Keung, S. N. L. C., Khan, M. O., Arvanitis, T. N., Fothergill, R., Hartley-Sharpe, C., Wilson, M. H., & Perkins, G. (2017). Barriers and facilitators to public access defibrillation in out-of-hospital cardiac arrest: A systematic review. European Heart Journal - Quality of Care and Clinical Outcomes, 3(4), 264–273. https://doi.org/10.1093/ehjqcco/qcx023
Starks, M. A., Blewer, A. L., Sharpe, E., Van Vleet, L., Riley, J., Arnold, E., Slattery, J., Joiner, A., Buckland, D. M., Ye, J., & others. (2020). Bystander performance during simulated drone delivery of an AED for mock out-of-hospital cardiac arrest. Journal of the American College of Cardiology, 75(11_Supplement_1), 303. https://doi.org/10.1016/S0735-1097(20)30930-3
Valenzuela, T. D., Roe, D. J., Cretin, S., Spaite, D. W., & Larsen, M. P. (1997). Estimating effectiveness of cardiac arrest interventions. Circulation, 96(10), 3308–3313. https://doi.org/10.1161/01.CIR.96.10.3308
Zègre-Hemsey, J. K., Grewe, M. E., Johnson, A. M., Arnold, E., Cunningham, C. J., Bogle, B. M., & Rosamond, W. D. (2020). Delivery of automated external defibrillators via drones in simulated cardiac arrest: Users’ experiences and the human-drone interaction. Resuscitation, 157, 83–88. https://doi.org/10.1016/j.resuscitation.2020.10.006
View Dimensions
View Altmetric
Save
Citation
View
Share