References
Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Control Series, 29(28), 42539-42559. https://doi.org/10.1007/s11356-022-20513-9
Acharya, K. P., Acharya, N., Phuyal, S., & Subramanya, S. H. (2020). Human infection with Avian influenza A virus in Nepal: Requisite for timely management and preparedness. VirusDisease, 31(3), 244-248. https://doi.org/10.1007/s13337-020-00647-5
Albahri, A. S., Hamid, R. A., Alwan, J. K., Al-Qays, Z. T., Zaidan, A. A., Zaidan, B. B., Albahri, A. O. S., AlAmoodi, A. H., Khlaf, J. M., Almahdi, E. M., Thabet, E., Hadi, S. M., Mohammed, K. I., Alsalem, M. A., Al-Obaidi, J. R., Madhloom, H. T. (2020). Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): A systematic review. Journal of Medical Systems, 44(7), 122. https://doi.org/10.1007/s10916-020-01651-x
Allen, T., Murray, K.A., Zambrana-Torrelio, C., Morse, S.S., Rondinini, C., Di Marco, M., Breit, N., Olival, K.J., Daszak, P. (2017). Global hotspots and correlates of emerging zoonotic diseases. Nature Communications, 8(1), 1124.
Althouse, B. M., Scarpino, S. V., Meyers, L. A., Ayers, J. W., Bargsten, M., Baumbach, J., Brownstein, J. S., Castro, L., Clapham, H., & Cummings, D. A. T. (2015). Enhancing disease surveillance with novel data streams: Challenges and opportunities. EPJ Data Science, 4(1), 1-8. https://doi.org/10.1140/epjds/s13688-015-0040-2
Asadzadeh, A., & Kalankesh, L. R. (2021). A scope of mobile health solutions in COVID-19 pandemics. Information Medica Unlocked, 23, Article 100558. https://doi.org/10.1016/j.imu.2021.100558
Asokan, G. V., & Mohammed, M. Y. (2021). Chapter 16 - Harnessing big data to strengthen evidence-informed precise public health response. In A. A. Moustafa (Ed.), Big Data in Psychiatry & Neurology (pp. 325-337). Academic Press. https://doi.org/10.1016/B978-0-12-819502-6.00016-5
Asokan, G., & Asokan, V. (2015). Leveraging “big data” to enhance the effectiveness of “one health” in an era of health informatics. Journal of Epidemiology and Global Health, 5(4), 311-314. https://doi.org/10.1016/j.jegh.2015.07.004
Bartlow, A. W., Manore, C., Xu, C., Kaufeld, K. A., Del Valle, S., Ziemann, A., Fairchild, G., & Fair, J. M. (2019). Forecasting zoonotic infectious disease response to climate change: Mosquito vectors and a changing environment. Veterinary Sciences, 6(2), 40. https://doi.org/10.3390/vetsci6020040
Beyer, P., & Theuretzbacher, U. (2017). The global pipeline for new antibiotics: Better but still insufficient. The Lancet Infectious Diseases, 17(2), 113-114.
Bush, K., & Bradford, P. A. (2016). β-Lactams and β-lactamase inhibitors: An overview. Cold Spring Harbor Perspectives in Medicine, 6(8), a025247.
Clatworthy, A. E., Pierson, E., & Hung, D. T. (2007). Targeting virulence: A new paradigm for antimicrobial therapy. Nature Chemical Biology, 3(9), 541-548.
Dabla, P. K., Gruson, D., Gouget, B., Bernardini, S., & Homsak, E. (2021). Lessons learned from the COVID-19 pandemic: Emphasizing the emerging role and perspectives from artificial intelligence, mobile health, and digital laboratory medicine. Ejifcc, 32(2), 224-243. https://doi.org/10.3757/ejifcc.2021.32.2.224
Datta, S., Abony, M., et al. (2021). Management of COVID-19 Crisis: Bangladesh Perspectives. Journal of Primeasia, 2(1), 1-5. https://doi.org/10.1002/jpri.20211
Davies, J., & Ryan, D. (2012). Overcoming the burden of bacterial infections: Past, present, and future. PLoS Pathogens, 8(8), e1002716.
De Mauro, A., Greco, M., & Grimaldi, M. (2016). A formal definition of big data based on its essential features. Library Review, 65(3), 122-135. https://doi.org/10.1108/LR-06-2015-0061
Di Bari, C., Venkateswaran, N., Fastl, C., Gabriel, S., Grace, D., Havelaar, A.H., Huntington, B., Patterson, G.T., Rushton, J., Speybroeck, N., Torgerson, P., Pigott, D.M., Devleesschauwer, B. (2023). The global burden of neglected zoonotic diseases: current state of evidence. One Health, 17, Article 100595.
Ellwanger, J. H., Kulmann-Leal, B., Kaminski, V. L., Valverde-Villegas, J., Veiga, A. B. G., Spilki, F. R., Fearnside, P. M., Caesar, L., Giatti, L. L., Wallau, G. L. (2020). Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health. Anais da Academia Brasileira de Ciências, 92(1), e20191375. https://doi.org/10.1590/0001-3765202020191375
Emdadul Haq, M., Billal Hossain, M., et al. (2022). Quantity estimation of lubricating oil in circular knitting machine. Journal of Primeasia, 3(1), 1-5. https://doi.org/30031
Farahani, B., Firouzi, F., & Luecking, M. (2021). The convergence of IoT and distributed ledger technologies (DLT): Opportunities, challenges, and solutions. Journal of Network and Computer Applications, 177, Article 102936. https://doi.org/10.1016/j.jnca.2020.102936
Firouzi, F., Rahmani, A. M., Mankodiya, K., Badaroglu, M., Merrett, G. V., Wong, P., & Farahani, B. (2018). Internet-of-things and big data for smarter healthcare: From device to architecture, applications, and analytics. Future Generation Computer Systems, 78, 583-586. https://doi.org/10.1016/j.future.2017.11.032
Fischbach, M. A., & Walsh, C. T. (2009). Antibiotics for emerging pathogens. Science, 325(5944), 1089-1093.
Fischbach, M. A., & Walsh, C. T. (2009). Synthetic biology-based diagnostics: Rapid pathogen detection for point-of-care testing in infectious diseases. Nature Biotechnology, 27(7), 805-812. https://doi.org/10.1038/nbt.1620
Fleming-Dutra, K. E., et al. (2016). Prevalence of inappropriate antibiotic prescriptions among US ambulatory care visits, 2010–2011. JAMA, 315(17), 1864-1873.
Ghosh, P. R., Afnan, M., et al. (2023). Neurocybernetic Assistive Technologies to Enhance Robotic Wheelchair Navigation. Journal of Primeasia, 4(1), 1-6. https://doi.org/10.40044
Ghosh, P. R., Halder, S., et al. (2024). Impact of Generative AI Models on Neurocybernetics for Enhancing Brain-Computer Interface Adaptability in Motor Disabilities. Journal of Primeasia, 4(1), 1-6. https://doi.org/10.40047
Ghosh, P. R., Maynul Hassan Moin, M., et al. (2023). Surgical Robotics Enhanced by 3D Reconstruction for Minimally Invasive Bicuspid Aortic Valve Replacement Surgery. Journal of Primeasia, 4(1), 1-6. https://doi.org/10.40043
Ghosh, P. R., Mowla, H., et al. (2022). Enhancing Robotics and Neurocybernetics with Brain-Computer Interfacing for Special Child Care. Journal of Primeasia, 4(1), 1-5. https://doi.org/10.40041
Giske, C. G., et al. (2008). Redefining extended-spectrum β-lactamases: Balancing science and clinical need. Clinical Microbiology and Infection, 14(1), 6-15.
Guinat, C., Tago, D., Corre, T., Selinger, C., Djidjou-Demasse, R., Paul, M., Raboisson, D., Nguyen Thi Thanh, T., Inui, K., Pham Thanh, L., Padungtod, P., & Vergne, T. (2021). Optimizing the early detection of low pathogenic avian influenza H7N9 virus in live bird markets. Journal of the Royal Society Interface, 18(178), Article 20210074. https://doi.org/10.1098/rsif.2021.0074
Hagstrom, M. (2012). High-performance analytics fuels innovation and inclusive growth: Use big data, hyperconnectivity, and speed to intelligence to get true value in the digital economy. Journal of Advanced Analytics, 2(3), 31-44. https://doi.org/10.1108/20442588.2012.2.3.31
Hinz, R., Frickmann, H., & Krüger, A. (2019). Climate change and infectious diseases. In M. Palocz-Andresen, D. Szalay, A. Gosztom, L. Sípos, & T. Taligás (Eds.), International Climate Protection (pp. 269-276). Springer International Publishing.
Huang, S.-C., Chaudhari, A. S., Langlotz, C. P., Shah, N., Yeung, S., & Lungren, M. P. (2022). Developing medical imaging AI for emerging infectious diseases. Nature Communications, 13(1), Article 7060. https://doi.org/10.1038/s41467-022-34522-2
Jin, X., Wah, B. W., Cheng, X., & Wang, Y. (2015). Significance and challenges of big data research. Big Data Research, 2(2), 59-64. https://doi.org/10.1016/j.bdr.2015.02.003
Jung, L. K., Ward, M. P., Boklund, A. E., Larsen, L. E., Hjulsager, C. K., & Kirkeby, C. T. (2023). Using surveillance data for early warning modelling of highly pathogenic avian influenza in Europe reveals a seasonal shift in transmission, 2016–2022. Scientific Reports, 13(1), Article 15396. https://doi.org/10.1038/s41598-023-42429-3
Karukappadath, R. M., Sirbu, D., & Zaky, A. (2023). Drug-resistant bacteria in the critically ill: Patterns and mechanisms of resistance and potential remedies. Frontiers in Antibiotic Resistance, 2, Article 1145190. https://doi.org/10.3389/fant.2023.1145190.
Kasson, P. M. (2020). Infectious disease research in the era of big data. Annual Review of Biomedicine & Data Science, 3(1), 43-59. https://doi.org/10.1146/annurev-biodatasci-030220-115238
Kraemer, M. U. G., Yang, C.-H., Gutierrez, B., Wu, C.-H., Klein, B., Pigott, D. M., Open, C.-D. W. G., du Plessis, L., Faria, N. R., Li, R., Hanage, W. P., Brownstein, J. S., Layan, M., Vespignani, A., Tian, H., Dye, C., Pybus, O. G., Scarpino, S. V. (2020). The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 368(6490), 493-497. https://doi.org/10.1126/science.aba9757
Lamer, J. (2016). Nanotechnology in drug delivery: Enhancing drug efficacy and targeted antibiotic delivery. Nanomedicine, 11(9), 1173-1185. https://doi.org/10.1016/j.nano.2016.05.005
Laxminarayan, R., et al. (2013). Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057-1098.
Lee, H. Y., Oh, M. N., Park, Y. S., Chu, C., & Son, T. J. (2013). Public health crisis preparedness and response in Korea. Osong Public Health and Research Perspectives, 4(5), 278–284. https://doi.org/10.1016/j.phrp.2013.09.008.
Limmathurotsakul, D., et al. (2019). Antibiotic overuse in low-income and middle-income countries: A global crisis. The Lancet Infectious Diseases, 19(8), e302-e307.
Liu, Q., Cao, L., & Zhu, X.Q. (2014). Major emerging and re-emerging zoonoses in China: a matter of global health and socioeconomic development for 1.3 billion. International Journal of Infectious Diseases, 25, 65-72.
Liu, Y. Y., et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161-168.
Md. Eaktear Uddin, Shakila Sultana, Maruf Abony et al. (2020). Antibiotic Sensitivity Pattern of Staphylococcus aureus Isolated from Pus Samples of Different Age and Sex Groups in Gazipur District, Bangladesh, Journal of Primesia University, 1(1), 1-8, 560013.
Md. Robeul Islam, Avijit Banik, Md. Abu Zihad et al. (2020). Isolation, Identification and Antibiotic Susceptibility Analysis of Bacterial Pathogens from Suspected Urinary Tract Infected Patients of Tertiary Medical Centre in Dhaka City, Bangladesh, Journal of Primesia University, 1(1), 1-8, 560012.
Naguib, M.M., Li, R., Ling, J., Grace, D., Nguyen-Viet, H., Lindahl, J.F. (2021). Live and wet markets: food access versus the risk of disease emergence. Trends in Microbiology, 29(7), 573-581.
Niakan Kalhori, S. R., Bahaadinbeigy, K., Deldar, K., Gholamzadeh, M., Hajesmaeel-Gohari, S., & Ayyoubzadeh, S. M. (2021). Digital health solutions to control the COVID-19 pandemic in countries with high disease prevalence: Literature review. Journal of Medical Internet Research, 23(3), Article e19473. https://doi.org/10.2196/19473
Ortiz, D. I., Piche-Ovares, M., Romero-Vega, L. M., Wagman, J., & Troyo, A. (2022). The impact of deforestation, urbanization, and changing land use patterns on the ecology of mosquito and tick-borne diseases in Central America. Insects, 13(1), 20. https://doi.org/10.3390/insects13010020
Pace, A. (2013). Technologies for large data management in scientific computing. International Journal of Modern Physics C, 25(2), 1430001. https://doi.org/10.1142/S0129183114300016
Pamer, E. G. (2016). Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science, 352(6285), 535-538.
Pappaioanou, M., Kane, T.R. (2023). Addressing the urgent health challenges of climate change and ecosystem degradation from a One Health perspective: what can veterinarians contribute? Journal of the American Veterinary Medical Association, 261(1), 49-55.
Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum β-lactamases: A clinical update. Clinical Microbiology Reviews, 18(4), 657-686.
Peng, H., Ruan, Z., Long, F., Simpson, J. H., & Myers, E. W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28(4), 348-353. https://doi.org/10.1038/nbt.1611
Plowright, R.K., Parrish, C.R., McCallum, H., Hudson, P.J., Ko, A.I., Graham, A.L., Lloyd-Smith, J.O. (2017). Pathways to zoonotic spillover. Nature Reviews Microbiology, 15(8), 502-510.
Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and Global Health, 109(7), 309-318.
Rekatsinas, T., Ghosh, S., Mekaru, S. R., Nsoesie, E. O., Brownstein, J. S., Getoor, L., & Ramakrishnan, N. (2015). In Sourceseer: Forecasting rare disease outbreaks using multiple data sources. In Proceedings of the 2015 SIAM International Conference on Data Mining (pp. 379-387). SIAM. https://doi.org/10.1137/1.9781611974028.46
Rohr, J.R., Barrett, C.B., Civitello, D.J., Craft, M.E., Delius, B., DeLeo, G.A., Hudson, P.J., Jouanard, N., Nguyen, K.H., Ostfeld, R.S., Remais, J.V., Riveau, G., Sokolow, S.H., Tilman, D. (2019). Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2(6), 445-456.
Schantz, P. M. (1991). Parasitic zoonoses in perspective. International Journal for Parasitology, 21(2), 161-170. https://doi.org/10.1016/0020-7519(91)90057-O
Shaheen, M.N.F. (2022). The concept of one health applied to the problem of zoonotic diseases. Reviews in Medical Virology, 32(4), e2326.
Sheng, J., Amankwah-Amoah, J., Khan, Z., & Wang, X. (2021). COVID-19 pandemic in the new era of big data analytics: Methodological innovations and future research directions. British Journal of Management, 32(4), 1164-1183. https://doi.org/10.1111/1467-8551.12415
Sim, S., & Cho, M. (2023). Convergence model of AI and IoT for virus disease control system. Personal and Ubiquitous Computing, 27(3), 1209-1219. https://doi.org/10.1007/s00779-023-01759-x
Strawn, G. O. (2012). Scientific research: How many paradigms? Education Review, 47(3), 26. https://doi.org/10.1037/a0024345
Tomori, O., & Oluwayelu, D.O. (2023). Domestic animals as potential reservoirs of zoonotic viral diseases. Annual Review of Animal Biosciences, 11, 33-55.
Walsh, C. (2018). CRISPR-based antimicrobials: Gene editing for targeting bacterial resistance genes. Nature Biotechnology, 36(7), 713-721. https://doi.org/10.1038/nbt.4167
World Health Organization (WHO). (2019). mRNA vaccines: Inducing immune response and COVID-19 potential for other infectious diseases. Global Vaccine Initiative. https://www.who.int/news-room/fact-sheets/detail/mrna-vaccines
Yaqoob, I., Hashem, I. A. T., Gani, A., Mokhtar, S., Ahmed, E., Anuar, N. B., & Vasilakos, A. V. (2016). Big data: From beginning to future. International Journal of Information Management, 36(6), 1231-1247. https://doi.org/10.1016/j.ijinfomgt.2016.06.012
Yeh, K. B., Parekh, F. K., Tabynov, K., Tabynov, K., Hewson, R., Fair, J. M., Essbauer, S., & Hay, J. (2021). Operationalizing cooperative research for infectious disease surveillance: Lessons learned and ways forward. Frontiers in Public Health, 9, Article 659695. https://doi.org/10.3389/fpubh.2021.659695
Zhang, Y., & Buckling, A. (2012). Bacteriophage therapy: Phages targeting bacterial infection to treat antibiotic-resistant bacteria. Bacteriophage Therapy, 6(1), 34-45. https://doi.org/10.1080/21597081.2012.651234
Zhou, X., Lee, E. W. J., Wang, X., Lin, L., Xuan, Z., Wu, D., Lin, H., & Shen, P. (2022). Infectious diseases prevention and control using an integrated health big data system in China. BMC Infectious Diseases, 22(1), 344. https://doi.org/10.1186/s12879-022-07353-7