Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Heavy Metal Accumulation and Phytochemical Profiling of Brassicaceae and Amaranthaceae for Phytoremediation and Medicinal Applications

Abdulilah Hanan Abdul Qader 1, Hind Hamid Hasan 2, Ashwaq Talib Hameed 3*, Hanan Y. Houmady 4, Rafraf abdul aziz abdul qader 5

+ Author Affiliations

Journal of Angiotherapy 8 (3) 1-10 https://doi.org/10.25163/angiotherapy.839498

Submitted: 08 January 2024 Revised: 05 March 2024  Published: 10 March 2024 


Abstract

Background: Human activities contribute significantly to the release of heavy metals into the environment, raising concerns about ecosystem health. Phytoremediation, utilizing plants to detoxify soils, emerges as a sustainable solution. Understanding heavy metal accumulation in different plant species and their secondary metabolites is crucial for environmental management and remediation efforts. Method: Plant samples were collected from western Iraq, and heavy element concentrations were determined using Atomic Absorption Spectroscopy. Qualitative assays were conducted to identify active compounds in alcoholic leaf extracts. Results: Iron accumulation varied among species, with S. irio and B. deflexa showing high accumulation. Brassica deflexa showed low accumulations of zinc, cadmium, and copper, with concentrations of 2.0, 0.04, and 2.2 mg/g, respectively, whereas Capsella bursa-pastoris exhibited high levels of all four metals. Copper accumulation patterns highlighted species-specific roles in environmental copper dynamics. Cadmium accumulation ranged from low to exceptional, with implications for phytoremediation. Zinc accumulation varied among species, with potential applications in bioremediation and biofortification. Conclusions: The study demonstrated significant differences in heavy metal accumulation and chemical profiles among plant species in western Iraq, highlighting their potential for phytoremediation and medicinal applications.

Keywords: Heavy Metals, Brassicaceae , Amaranthaceae, Secondary Metabolites, Western Iraq

References


Abubakar, A. R., & Haque, M. (2020). Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy & Bioallied Sciences, 12(1), 1.

Adejumo, A. L., Azeez, L., Kolawole, T. O., Aremu, H. K., Adedotun, I. S., Oladeji, R. D., Adeleke, A. E., & Abdullah, M. (2023). Silver nanoparticles strengthen Zea mays against toxic metal-related phytotoxicity via enhanced metal phytostabilization and improved antioxidant responses. International Journal of Phytoremediation, 1–11.

Adomako, M. O., & Yu, F.-H. (2023). Effects of resource availability on the growth, Cd accumulation, and photosynthetic efficiency of three hyperaccumulator plant species. Journal of Environmental Management, 345, 118762.

Al-Gizzi, I. A., Al-Knaany, S., & Khalaf, R. (2023). Using Wild Plant Species Grown in Wadi Al–Tib Region North East of Al–Ammara, Iraq, as Indicators of Heavy Metals Accumulation. Baghdad Science Journal.

Alqethami, A., & Aldhebiani, A. Y. (2021). Medicinal plants used in Jeddah, Saudi Arabia: phytochemical screening. Saudi Journal of Biological Sciences, 28(1), 805–812.

Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714–727.

Balafrej, H., Bogusz, D., Triqui, Z.-E. A., Guedira, A., Bendaou, N., Smouni, A., & Fahr, M. (2020). Zinc hyperaccumulation in plants: A review. Plants, 9(5), 562.

Bian, F., Zhong, Z., Zhang, X., Yang, C., & Gai, X. (2020). Bamboo–An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere, 246, 125750.

Chen, G., Li, J., Han, H., Du, R., & Wang, X. (2022). Physiological and molecular mechanisms of plant responses to copper stress. International Journal of Molecular Sciences, 23(21), 12950.

Connorton, J. M., Balk, J., & Rodríguez-Celma, J. (2017). Iron homeostasis in plants–a brief overview. Metallomics, 9(7), 813–823.

Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132(1), 29–40.

Drozdova, I., Alekseeva-Popova, N., Dorofeyev, V., Bech, J., Belyaeva, A., & Roca, N. (2019). A comparative study of the accumulation of trace elements in Brassicaceae plant species with phytoremediation potential. Applied Geochemistry, 108, 104377.

Erb, M., & Kliebenstein, D. J. (2020). Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiology, 184(1), 39–52.

Faizan, M., Faraz, A., Mir, A. R., & Hayat, S. (2021). Role of zinc oxide nanoparticles in countering negative effects generated by cadmium in Lycopersicon esculentum. Journal of Plant Growth Regulation, 40, 101–115.

Hameed, A. T., Dawd, S. M., & Al Bahadly, Z. K. (2021). Ecological Study and Peroxidase Activity of Some Medical Plant (Asteraceae) Growth Wildly in Anbar Governorate–Iraq. Journal of Physics: Conference Series, 1818(1), 12037.

Hamzah Saleem, M., Usman, K., Rizwan, M., Al Jabri, H., & Alsafran, M. (2022). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092.

Hashem, M. A., Hasan, M. A., Nayan, A. H., Payel, S., Hasan, M., & Sahen, M. S. (2021). The environmental impacts of heavy metals in soil, certain plants and wastewater near industrial area of Brahmanbaria, Bangladesh. Environmental Monitoring and Assessment, 193, 1–11.

Herlihy, J. H., Long, T. A., & McDowell, J. M. (2020). Iron homeostasis and plant immune responses: recent insights and translational implications. Journal of Biological Chemistry, 295(39), 13444–13457.

Huang, X., Duan, S., Wu, Q., Yu, M., & Shabala, S. (2020). Reducing cadmium accumulation in plants: structure–function relations and tissue-specific operation of transporters in the spotlight. Plants, 9(2), 223.

Hussain, S., Khan, M., Sheikh, T. M. M., Mumtaz, M. Z., Chohan, T. A., Shamim, S., & Liu, Y. (2022). Zinc essentiality, toxicity, and its bacterial bioremediation: A comprehensive insight. Frontiers in Microbiology, 13, 900740.

Hussain, S., Khan, M., Sheikh, T. M. M., Mumtaz, M. Z., Chohan, T. A., Shamim, S., & Liu, Y. (2023). Corrigendum: Zinc essentiality, toxicity, and its bacterial bioremediation: A comprehensive insight. Frontiers in Microbiology, 13, 1133733.

Hussein, R. A., & El-Anssary, A. A. (2019). Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. Herbal Medicine, 1(3).

Issa, N. I., Hasan, Z. Y., & Hameed, A. T. (2020). Phytochemical investigation and antioxidant activity of total phenols in the aerial parts of some Asteraceae family wild plants grown in western of Iraq. Systematic Reviews in Pharmacy, 11(1), 62–68.

Kang, W., Bao, J., Zheng, J., Xu, F., & Wang, L. (2018). Phytoremediation of heavy metal contaminated soil potential by woody plants on Tonglushan ancient copper spoil heap in China. International Journal of Phytoremediation, 20(1), 1–7.

Kasozi, N., Tandlich, R., Fick, M., Kaiser, H., & Wilhelmi, B. (2019). Iron supplementation and management in aquaponic systems: A review. Aquaculture Reports, 15, 100221.

Khan, I. U., Qi, S.-S., Gul, F., Manan, S., Rono, J. K., Naz, M., Shi, X.-N., Zhang, H., Dai, Z.-C., & Du, D.-L. (2023). A Green Approach Used for Heavy Metals ‘Phytoremediation’Via Invasive Plant Species to Mitigate Environmental Pollution: A Review. Plants, 12(4), 725.

Korzeniowska, J., & Stanislawska-Glubiak, E. (2023). The Phytoremediation Potential of Local Wild Grass Versus Cultivated Grass Species for Zinc-Contaminated Soil. Agronomy, 13(1), 160.

Lange, B., van Der Ent, A., Baker, A. J. M., Echevarria, G., Mahy, G., Malaisse, F., Meerts, P., Pourret, O., Verbruggen, N., & Faucon, M. (2017). Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytologist, 213(2), 537–551.

Li, M., Watanabe, S., Gao, F., & Dubos, C. (2023). Iron Nutrition in Plants: Towards a New Paradigm? Plants, 12(2), 384.

Li, Y., Wang, C., Yan, C., Liu, S., Chen, X., Zeng, M., Dong, Y., & Jiao, R. (2023). Heavy Metal Concentrations and Accumulation Characteristics of Dominant Woody Plants in Iron and Lead− Zinc Tailing Areas in Jiangxi, Southeast China. Forests, 14(4), 846.

Li, Z., Wen, W., Qin, M., He, Y., Xu, D., & Li, L. (2022). Biosynthetic mechanisms of secondary metabolites promoted by the interaction between endophytes and plant hosts. Frontiers in Microbiology, 13, 928967.

Liberal, Â., Pinela, J., Vívar-Quintana, A. M., Ferreira, I. C. F. R., & Barros, L. (2020). Fighting iron-deficiency anemia: innovations in food fortificants and biofortification strategies. Foods, 9(12), 1871.

Mahajan, P., & Kaushal, J. (2018). Role of phytoremediation in reducing cadmium toxicity in soil and water. Journal of Toxicology, 2018.

Mir, A. R., Pichtel, J., & Hayat, S. (2021). Copper: uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. Biometals, 34(4), 737–759.

Mocek-Plóciniak, A., Mencel, J., Zakrzewski, W., & Roszkowski, S. (2023). Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems. Plants, 12(8), 1653.

Mohammed, I. H., Hameed, A. T., & Salman, H. F. (2020). Phytochemical and Biological of Anthemis nobilis (Asteraceae family) a Native Herbs of Iraq. Systematic Reviews in Pharmacy, 11(2).

Morrissey, J., & Guerinot, M. Lou. (2009). Iron uptake and transport in plants: the good, the bad, and the ionome. Chemical Reviews, 109(10), 4553–4567.

Pilon, M., Abdel-Ghany, S. E., Cohu, C. M., Gogolin, K. A., & Ye, H. (2006). Copper cofactor delivery in plant cells. Current Opinion in Plant Biology, 9(3), 256–263.

Rahimi, M., Farhadi, R., & Mehdizadeh, R. (2013). Phytoremediation: using plants to clean up contaminated soils with heavy metals. International Journal of Agriculture, 3(1), 148.

Rashid, M. H., Rahman, M. M., & Naidu, R. (2022). Zinc Biofortification through Basal Zinc Supply Reduces Grain Cadmium in Mung Beans: Metal Partitioning and Health Risks Assessment. Toxics, 10(11), 689.

Shabbir, Z., Sardar, A., Shabbir, A., Abbas, G., Shamshad, S., Khalid, S., Murtaza, G., Dumat, C., & Shahid, M. (2020). Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere, 259, 127436.

Shaikh, J. R., & Patil, M. (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies, 8(2), 603–608.

Sperdouli, I., Adamakis, I.-D. S., Dobrikova, A., Apostolova, E., Hanc, A., & Moustakas, M. (2022). Excess zinc supply reduces cadmium uptake and mitigates cadmium toxicity effects on chloroplast structure, oxidative stress, and photosystem II photochemical efficiency in Salvia sclarea plants. Toxics, 10(1), 36.

Stanton, C., Sanders, D., Krämer, U., & Podar, D. (2022). Zinc in plants: Integrating homeostasis and biofortification. Molecular Plant, 15(1), 65–85.

Stefanowicz, A. M., Stanek, M., Woch, M. W., & Kapusta, P. (2016). The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining. Environmental Science and Pollution Research, 23, 6524–6534.

Subašic, M., Šamec, D., Selovic, A., & Karalija, E. (2022). Phytoremediation of cadmium polluted soils: current status and approaches for enhancing. Soil Systems, 6(1), 3.

Wairich, A., De Conti, L., Lamb, T. I., Keil, R., Neves, L. O., Brunetto, G., Sperotto, R. A., & Ricachenevsky, F. K. (2022). Throwing copper around: How plants control uptake, distribution, and accumulation of copper. Agronomy, 12(5), 994.

Wei, Z., Gu, H., Van Le, Q., Peng, W., Lam, S. S., Yang, Y., Li, C., & Sonne, C. (2021). Perspectives on phytoremediation of zinc pollution in air, water and soil. Sustainable Chemistry and Pharmacy, 24, 100550.

Xing, W., Liu, H., Banet, T., Wang, H., Ippolito, J. A., & Li, L. (2020). Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter. Ecotoxicology and Environmental Safety, 198, 110683.

Xu, D.-M., Fu, R.-B., Liu, H.-Q., & Guo, X.-P. (2021). Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review. Journal of Cleaner Production, 286, 124989.

Yildirim, D., & Sasmaz, A. (2017). Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kutahya Turkey). Journal of Geochemical Exploration, 182, 228–234.

Zhang, D., Zhang, T., Liu, J., Chen, J., Li, Y., Ning, G., Huo, N., Tian, W., & Ma, H. (2019). Zn supplement-antagonized cadmium-induced cytotoxicity in macrophages in vitro: involvement of cadmium bioaccumulation and metallothioneins regulation. Journal of Agricultural and Food Chemistry, 67(16), 4611–4622.

Zhang, Q., Yu, R., Fu, S., Wu, Z., Chen, H. Y. H., & Liu, H. (2019). Spatial heterogeneity of heavy metal contamination in soils and plants in Hefei, China. Scientific Reports, 9(1), 1049.

Zhi, Y., Zhou, Q., Leng, X., & Zhao, C. (2020). Mechanism of remediation of cadmium-contaminated soil with low-energy plant Snapdragon. Frontiers in Chemistry, 8, 222.

Zhou, X., Sun, J., Tian, Y., Yao, K., & Xu, M. (2022). Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 266, 120460.

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
408
View

Share