Integrative Biomedical Research | Online ISSN  2207-872X
REVIEWS   (Open Access)

Analysis of Potential Biomarkers in Hypertension

Alexander V. Blagov1*, Margarita A. Sazonova 1,2,  Anastasia I. Ryzhkova1, Marina D. Sazonova1, Mikhail A. Popov6, Egor Yu. Budnikov1, Paolo Poggio7, Donato Moschetta7, Yuri V. Arkhipenko1,3, Vasily P. Karagodin5,   Alexander N. Orekhov1,4

+ Author Affiliations

Integrative Biomedical Research (Former Journal of Angiotherapy) 9(1) 1-8 https://doi.org/10.25163/biomedical.9110267

Submitted: 11 March 2025  Revised: 28 May 2025  Published: 31 May 2025 

Abstract

Hypertension is a leading global health issue associated with significant morbidity and mortality. Early and accurate detection is crucial to prevent cardiovascular and renal complications. This article reviews both currently used and emerging biomarkers for hypertension. Current biomarkers include renin, aldosterone, and natriuretic peptides, which aid in diagnosing secondary hypertension but have limitations. Novel biomarkers—such as microRNAs, DNA methylation profiles, and metabolomics—are showing potential for early detection and personalized care. We compare the strengths and weaknesses of these biomarkers and emphasize the need for further validation in clinical settings. The goal is to enhance diagnostic precision and therapeutic strategies for hypertension through biomarker innovation.

Keywords: inflammation, biomarkers, hypertension, vascular, CRP

References

Bakris, G. L., & Ritz, E. (2009). The message for World Kidney Day 2009: Hypertension and kidney disease: A marriage that should be prevented. Kidney International, 75(8), 709–712. https://doi.org/10.1038/ki.2009.43

Bautista, L. E., Vera, L. M., Arenas, I. A., & Gamarra, G. (2005). Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-α) and essential hypertension. Journal of Human Hypertension, 19(2), 149–154. https://doi.org/10.1038/sj.jhh.1001799

Bidani, A. K., & Griffin, K. A. (2004). Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension, 44(5), 595–601. https://doi.org/10.1161/01.HYP.0000145850.28481.64

Boutouyrie, P., Tropeano, A. I., Asmar, R., Gautier, I., Benetos, A., Lacolley, P., & Laurent, S. (2002). Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: A longitudinal study. Hypertension, 39(1), 10–15. https://doi.org/10.1161/hy0102.099031

Brown, J. M., Siddiqui, M., Calhoun, D. A., Carey, R. M., Hopkins, P. N., Williams, G. H., & Vaidya, A. (2013). The renin-angiotensin-aldosterone system in the pathogenesis and treatment of hypertension. Nature Reviews Nephrology, 9(10), 539–553. https://doi.org/10.1038/nrneph.2013.141

Brown, N. J. (2008). Aldosterone and vascular inflammation. Hypertension, 51(2), 161–167. https://doi.org/10.1161/HYPERTENSIONAHA.107.093401

Carey, R. M., Calhoun, D. A., Bakris, G. L., Brook, R. D., Daugherty, S. L., Dennison Himmelfarb, C. R., ... & Whelton, P. K. (2017). Resistant hypertension: Detection, evaluation, and management: A scientific statement from the American Heart Association. Hypertension, 72(5), e53–e90. https://doi.org/10.1161/HYP.0000000000000084

Chen, Y., et al. (2022). Frontiers in Cell and Developmental Biology, 10, 913784. https://doi.org/10.3389/fcell.2022.913784

Cheng, X., et al. (2021). Hypertension Research, 44(3), 245–253. https://doi.org/10.1038/s41440-020-00585-3

Crowley, S. D., & Coffman, T. M. (2012). Recent advances involving the renin–angiotensin system. Hypertension, 60(2), 588–596. https://doi.org/10.1161/HYPERTENSIONAHA.111.189829

De Miguel, C., Guo, C., & Lund, H. (2015). Inflammation and hypertension: New understandings and potential therapeutic targets. Current Hypertension Reports, 17(1), 507. https://doi.org/10.1007/s11906-014-0507-4

El-Missiry, M. A., et al. (2007). Oxidative stress and circulating DNA as biomarkers in hypertension. Clinica Chimica Acta, 383(1–2), 58–64. https://doi.org/10.1016/j.cca.2007.05.012

Esler, M., Lambert, E., & Schlaich, M. (2010). Point: Chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. The Journal of Applied Physiology, 109(6), 1996–1998. https://doi.org/10.1152/japplphysiol.00491.2010

Franzén, O., Ermel, R., Cohain, A., Akers, N. K., Di Narzo, A., Talukdar, H. A., ... & Björkegren, J. L. M. (2021). Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science, 353(6301), 827–830. https://doi.org/10.1126/science.aad6970

Funder, J. W., Carey, R. M., Mantero, F., Murad, M. H., Reincke, M., Shibata, H., ... & Young, W. F. (2016). The management of primary aldosteronism: case detection, diagnosis, and treatment: An Endocrine Society Clinical Practice Guideline. Journal of Clinical Endocrinology & Metabolism, 101(5), 1889–1916. https://doi.org/10.1210/jc.2015-4061

GBD 2019 Risk Factors Collaborators. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258), 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2

Gerstein, H. C., et al. (2001). Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and non-diabetic individuals. JAMA, 286(4), 421–426. https://doi.org/10.1001/jama.286.4.421

Ghiadoni, L., et al. (2012). Endothelial function and hypertension. Journal of Hypertension, 30(3), 453–461. https://doi.org/10.1097/HJH.0b013e32834f0e2c

Guzik, T. J., et al. (2007). T cells and vascular inflammation in hypertension. Nature Clinical Practice Cardiovascular Medicine, 4(11), 616–623. https://doi.org/10.1038/ncpcardio1035

Hall, J. E., et al. (1999). Pressure–natriuresis relationship and salt sensitivity of blood pressure in hypertension. Hypertension, 33(3), 912–917. https://doi.org/10.1161/01.HYP.33.3.912

Harrison, D. G., & Gongora, M. C. (2009). Oxidative stress and hypertension. Medical Clinics of North America, 93(3), 621–635. https://doi.org/10.1016/j.mcna.2009.02.007

Harrison, D. G., et al. (2011). Inflammation, immunity, and hypertension. Hypertension, 57(2), 132–140. https://doi.org/10.1161/HYPERTENSIONAHA.110.163576

Ho, J. E., et al. (2021). Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure. JACC: Heart Failure, 9(2), 115–123. https://doi.org/10.1016/j.jchf.2020.10.008

Iadecola, C., & Davisson, R. L. (2008). Hypertension and cerebrovascular dysfunction. Cell Metabolism, 7(6), 476–484. https://doi.org/10.1016/j.cmet.2008.03.010

Intengan, H. D., & Schiffrin, E. L. (2001). Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension, 38(3), 581–587. https://doi.org/10.1161/hy09t1.093959

Itani, H. A., Xiao, L., Saleh, M. A., Wu, J., Pilkinton, M. A., Dale, B. L., ... & Harrison, D. G. (2020). CD70 exacerbates blood pressure elevation and renal damage in response to repeated hypertensive stimuli. Hypertension, 75(2), 466–476. https://doi.org/10.1161/HYPERTENSIONAHA.119.13461

Jhund, P. S., et al. (2009). N-terminal pro-BNP testing in primary care: Impact on heart failure diagnosis and mortality. European Heart Journal, 30(7), 857–866. https://doi.org/10.1093/eurheartj/ehn623

Jiang, L., et al. (2023). A multi-omics approach identifies novel predictors of hypertension progression. Nature Communications, 14, 2231. https://doi.org/10.1038/s41467-023-37427-z

Kobori, H., et al. (2007). The intrarenal renin–angiotensin system: From physiology to the pathobiology of hypertension and kidney disease. Pharmacological Reviews, 59(3), 251–287. https://doi.org/10.1124/pr.59.3.3

Kontaraki, J. E., et al. (2021). MicroRNA-21 and microRNA-155 are associated with resistant hypertension and inflammation. Journal of Human Hypertension, 35(1), 13–20. https://doi.org/10.1038/s41371-020-0356-3

Kucera, J., et al. (2021). Plasma 8-isoprostane and hypertension: Clinical implications of oxidative stress markers. Free Radical Biology and Medicine, 164, 267–275. https://doi.org/10.1016/j.freeradbiomed.2021.01.009

Laurent, S., et al. (2006). Expert consensus document on arterial stiffness: methodological issues and clinical applications. European Heart Journal, 27(21), 2588–2605. https://doi.org/10.1093/eurheartj/ehl254

Lee, H., Zhang, D., & Wu, J. (2020). Exosomal miRNAs in hypertension: Diagnostic and therapeutic opportunities. Hypertension Research, 43(8), 681–689. https://doi.org/10.1038/s41440-020-0435-8

Levey, A. S., et al. (2009). A new equation to estimate glomerular filtration rate. Annals of Internal Medicine, 150(9), 604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

Lewington, S., et al. (2002). Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. The Lancet, 360(9349), 1903–1913. https://doi.org/10.1016/S0140-6736(02)11911-8

Li, J., et al. (2021). Gut microbiota-derived TMAO: A novel biomarker for hypertension. Hypertension Research, 44(5), 669–678. https://doi.org/10.1038/s41440-020-00579-1

Liu, L., et al. (2022). Metabolomics reveals branched-chain amino acid pathways associated with hypertension development. Circulation Research, 131(3), 250–262. https://doi.org/10.1161/CIRCRESAHA.122.320121

Lu, Y., et al. (2023). miRNA profiling in resistant hypertension: Insight into diagnostic and therapeutic biomarkers. Hypertension Research, 46(2), 256–265. https://doi.org/10.1038/s41440-022-00999-8

Ma, J., et al. (2023). Trimethylamine-N-oxide contributes to salt-sensitive hypertension via endothelial dysfunction. Hypertension, 80(2), 380–392. https://doi.org/10.1161/HYPERTENSIONAHA.122.20367

Maisel, A. S., et al. (2002). Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. New England Journal of Medicine, 347(3), 161–167. https://doi.org/10.1056/NEJMoa020233

McKie, P. M., et al. (2010). NT-proBNP and the prediction of new-onset hypertension. Hypertension, 56(4), 623–630. https://doi.org/10.1161/HYPERTENSIONAHA.110.156851

Mills, K. T., Bundy, J. D., Kelly, T. N., Reed, J. E., Kearney, P. M., Reynolds, K., ... & He, J. (2016). Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries. Circulation, 134(6), 441–450. https://doi.org/10.1161/CIRCULATIONAHA.115.018912

Mitchell, G. F., et al. (2010). Arterial stiffness and cardiovascular events. New England Journal of Medicine, 362(10), 917–927. https://doi.org/10.1056/NEJMoa090756

Muntner, P., Shimbo, D., Carey, R. M., Charleston, J. B., Gaillard, T., Misra, S., ... & Wright, J. T. (2019). Measurement of blood pressure in humans: A scientific statement from the American Heart Association. Hypertension, 73(5), e35–e66. https://doi.org/10.1161/HYP.0000000000000087

Norlander, A. E., Madhur, M. S., & Harrison, D. G. (2022). The immune system in hypertension. Current Hypertension Reports, 24(2), 1–11. https://doi.org/10.1007/s11906-022-01176-8

Oparil, S., et al. (2003). Pathogenesis of hypertension. Annals of Internal Medicine, 139(9), 761–776. https://doi.org/10.7326/0003-4819-139-9-200311040-00011

Paulus, W. J., & Tschöpe, C. (2013). A novel paradigm for heart failure with preserved ejection fraction. Journal of the American College of Cardiology, 62(4), 263–271. https://doi.org/10.1016/j.jacc.2013.02.092

Pérez-Gómez, M. V., Ortiz, A., & Morales, E. (2022). Biomarkers in arterial hypertension: New insights and clinical implications. Current Hypertension Reports, 24(5), 163–175. https://doi.org/10.1007/s11906-022-01159-9

Pluznick, J. L., et al. (2020). Short-chain fatty acid signaling and blood pressure regulation. Physiological Reviews, 100(4), 1727–1774. https://doi.org/10.1152/physrev.00032.2019

Rangel, I. C., et al. (2019). Epigenetic regulation in arterial hypertension. International Journal of Molecular Sciences, 20(15), 3828. https://doi.org/10.3390/ijms20153828

Richard, M. A., et al. (2021). DNA methylation loci associated with blood pressure and hypertension. Nature Communications, 12(1), 1–14. https://doi.org/10.1038/s41467-021-21313-6

Sesso, H. D., Buring, J. E., Rifai, N., Blake, G. J., Gaziano, J. M., & Ridker, P. M. (2003). C-reactive protein and the risk of developing hypertension. JAMA, 290(22), 2945–2951. https://doi.org/10.1001/jama.290.22.2945

Sun, Y., et al. (2021). Proteomic profiling in hypertension: Identification of early-stage biomarkers. Journal of Proteome Research, 20(4), 2030–2041. https://doi.org/10.1021/acs.jproteome.0c00960

Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E., Collins, K. J., Dennison Himmelfarb, C., ... & Wright, J. T. (2018). 2017 ACC/AHA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. Hypertension, 71(6), e13–e115. https://doi.org/10.1161/HYP.0000000000000065

World Health Organization. (2023). Hypertension. https://www.who.int/news-room/fact-sheets/detail/hypertension

Xu, Y., et al. (2022). Global DNA hypomethylation is associated with increased blood pressure in adults: A meta-analysis. Epigenetics, 17(5), 511–521. https://doi.org/10.1080/15592294.2022.2046655

Yan, Q., et al. (2022). Gut microbiota dysbiosis contributes to hypertension via SCFA-mediated GPR41 signaling. Nature Reviews Nephrology, 18(2), 77–89. https://doi.org/10.1038/s41581-021-00522-7

Yazdani, S., et al. (2021). MicroRNAs as biomarkers in hypertension: A systematic review. Journal of the Renin-Angiotensin-Aldosterone System, 22, 1–10. https://doi.org/10.1177/14703203211026044

Young, W. F. (2007). Primary aldosteronism: Renaissance of a syndrome. Clinical Endocrinology, 66(5), 607–618. https://doi.org/10.1111/j.1365-2265.2007.02899.x

Yuyun, M. F., et al. (2004). Microalbuminuria predicts cardiovascular mortality independently of conventional risk factors in a middle-aged cohort. Journal of the American Society of Nephrology, 15(6), 1834–1841. https://doi.org/10.1097/01.ASN.0000126466.18372.6B

Zhang, Y., et al. (2021). LINE-1 hypomethylation and hypertension: A meta-analysis of EWAS studies. Hypertension, 77(4), 1109–1118. https://doi.org/10.1161/HYPERTENSIONAHA.120.16517

Zhang, Y., et al. (2022). Associations of omega-3/6-derived oxylipins with blood pressure regulation in humans. Hypertension, 79(1), 120–130. https://doi.org/10.1161/HYPERTENSIONAHA.121.18374

Zhao, Y., Zhang, X., Zhang, J., Sun, Y., & Zhao, L. (2022). LncRNA-Ang362 promotes hypertension by enhancing vascular smooth muscle cell proliferation. Molecular Therapy – Nucleic Acids, 28, 208–219. https://doi.org/10.1016/j.omtn.2022.07.015

Zheng, Y., et al. (2021). Metabolomics of hypertension and risk of cardiovascular disease: The role of branched-chain amino acids. Hypertension, 77(3), 761–770. https://doi.org/10.1161/HYPERTENSIONAHA.120.16158

Zhou, X., et al. (2022). Exosomal miRNAs as early diagnostic biomarkers for essential hypertension. Hypertension Research, 45(6), 1002–1011. https://doi.org/10.1038/s41440-022-00859-5

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
27
View
0
Share