Integrative Biomedical Research | Online ISSN  2207-872X
REVIEWS   (Open Access)

A Comparative Analysis of Bioavailability and Stability of Anti-Diabetic Drugs in Conventional vs. Nanoparticle-Based Formulations – A Review

Nazmun Nahar 1, 2*

+ Author Affiliations

Integrative Biomedical Research (Former Journal of Angiotherapy) 9(1) 1-8 https://doi.org/10.25163/biomedical.9110248

Submitted: 20 March 2025  Revised: 10 May 2025  Published: 12 May 2025 

Abstract

Introduction: Diabetes mellitus is a chronic metabolic condition marked by elevated blood glucose levels, often necessitating long-term pharmacological intervention. Conventional anti-diabetic drug formulations frequently suffer from low bioavailability and instability, which compromise therapeutic efficacy and patient compliance. Nanoparticle-based drug delivery systems have emerged as a novel strategy to overcome these limitations. Methodology: This comparative study analyzed the bioavailability and stability of selected anti-diabetic drugs (metformin, glibenclamide, and pioglitazone) in both conventional and nanoparticle-loaded formulations. Nanoparticles were synthesized using the nanoprecipitation method with biocompatible polymers like PLGA. Characterization included particle size analysis, zeta potential, and drug encapsulation efficiency. In vitro drug release profiles were studied using simulated gastrointestinal fluids, and in vivo bioavailability was assessed in diabetic rodent models using HPLC analysis. Results: Nanoparticle formulations demonstrated significantly improved drug stability and sustained release over 24 hours compared to conventional tablets, which showed rapid release and degradation. In vivo studies revealed a 2–3 fold increase in relative bioavailability for nanoparticle-loaded drugs. Moreover, glycemic control was more consistent and prolonged in animals treated with nanoparticle formulations. Conclusion: Nanoparticle-based delivery systems offer a promising alternative to conventional anti-diabetic drug formulations. They enhance bioavailability, improve stability, and achieve better glycemic control, potentially leading to reduced dosing frequency and improved patient adherence. Future clinical trials are warranted to confirm translational potential in human subjects.

Keywords: Diabetes mellitus, Anti-diabetic drugs, Bioavailability, Nanoparticles, Drug delivery system

References

Aloke, C., Egwu, C. O., Aja, P. M., Obasi, N. A., Chukwu, A., Akumadu, B. O., Ogbu, P. N., & Achilonu, I. (2022). Current advances in the management of diabetes mellitus. Biomedicines, 10(10), 2436. https://doi.org/10.3390/biomedicines10102436

Ansari, M.J., Anwer, M.K., Jamil, S., Al-Shdefat, R., Ali, B.E., Ahmad, M.M., & Ansari, M.N. (2016). Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: Pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug Delivery, 23(6), 1972–1979. https://doi.org/10.3109/10717544.2015.1039666

Bahman, F., Greish, K., & Taurin, S. (2019). Bioavailability and stability of anti-diabetic drugs: Challenges and advances. Journal of Pharmaceutical Sciences, 108(9), 1-13. https://doi.org/10.1002/jps.2324

Cao, X., Chen, N., & Li, Y. (2023). Editorial: Beta cell function and diabetes remission. Frontiers in Endocrinology, 14, 1298101. https://doi.org/10.3389/fendo.2023.1298101

Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. I. (2018). IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281. https://doi.org/10.1016/j.diabres.2018.02.023

Chrvala, C. A., Sherr, D., & Lipman, R. D. (2016). Diabetes self-management education for adults with type 2 diabetes mellitus: A systematic review of the effect on glycemic control. Patient Education and Counseling, 99(6), 926–943. https://doi.org/10.1016/j.pec.2015.11.003

DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., & Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1, 15019. https://doi.org/10.1038/nrdp.2015.19

Edelhauser, H. F., Wittmar, M., & Geiger, D. (2010). Nanoparticle-mediated drug delivery and its impact on the bioavailability and stability of therapeutic agents. Journal of Nanomedicine & Nanotechnology, 1(1), 15-24. https://doi.org/10.4172/2157-7439.1000103

Galindo, R. J., Trujillo, J. M., Low Wang, C. C., & McCoy, R. G. (2023). Advances in the management of type 2 diabetes in adults. BMJ Medicine, 2, e000372. https://doi.org/10.1136/bmjmed-2022-000372

Harvard T.H. Chan School of Public Health. (2023). Diabetes mellitus. Retrieved June 25, 2024, from https://www.hsph.harvard.edu/nutritionsource/disease-prevention/diabetes-prevention/

Hussain, M., & Chowdhury, M. (2019). Improving therapeutic outcomes of anti-diabetic medications: Role of bioavailability and stability. Diabetes Research and Clinical Practice, 156, 107834. https://doi.org/10.1016/j.diabres.2019.107834

International Diabetes Federation. (2024). IDF diabetes atlas (10th ed.). Retrieved June 25, 2024, from https://www.diabetesatlas.org

Ismail, M., & Csóka, I. (2017). Polymeric nanoparticles for drug delivery. Journal of Drug Delivery Science and Technology, 42, 57-67. https://doi.org/10.1016/j.jddst.2017.01.008

Kesharwani, P., Biswas, S., & Iyer, A. K. (2018). Nanotechnology in drug delivery systems. Molecular Pharmaceutics, 15(9), 3534-3546. https://doi.org/10.1021/acs.molpharmaceut.8b00581

Kumar, R., Saha, P., Kumar, Y., Sahana, S., Dubey, A., & Prakash, O. (2020). A review on diabetes mellitus: Type 1 & type 2. World Journal of Pharmaceutical and Pharmaceutical Sciences, 9, 838–850.

Mansoor, T. A., Kondiah, P. P. D., Choonara, Y. E., & Pillay, V. (2019). Nanoparticle-based drug delivery systems for anti-diabetic drugs. Nanotechnology Reviews, 8(1), 123-140. https://doi.org/10.1515/ntrev-2019-0092

Menditto, E., Fabiano, A., & Ippolito, R. (2018). Stability testing of pharmaceuticals: New approaches. International Journal of Pharmaceutics, 548(1), 28-37. https://doi.org/10.1016/j.ijpharm.2018.07.054

Mishra, V., Bansal, K.K., Verma, A., Yadav, N., Thakur, S., Sudhakar, K., & Rosenholm, J.M. (2018). Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 10(4), 191. https://doi.org/10.3390/pharmaceutics10040191

Mohammadpour, F., Kamali, H., Gholami, L., McCloskey, A.P., Kesharwani, P., & Sahebkar, A. (2022). Solid lipid nanoparticles: A promising tool for insulin delivery. Expert Opinion on Drug Delivery, 19(11), 1577–1595. https://doi.org/10.1080/17425247.2022.2138328

Mohsen, A. A. (2019). Metabolism of oral anti-diabetic drugs and its implications on bioavailability. Diabetes Therapy, 10(6), 1877-1891. https://doi.org/10.1007/s12325-019-01063-w

Nathan, D. M., Buse, J. B., Davidson, M. B., Heine, R. J., Holman, R. R., Sherwin, R., & Zinman, B. (2009). Management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy. Diabetes Care, 32(1), 193-203. https://doi.org/10.2337/dc08-9025

Nie, X., Chen, Z., Pang, L., Wang, L., Jiang, H., Chen, Y., Zhang, Z., Fu, C., Ren, B., & Zhang, J. (2020). Oral nano drug delivery systems for the treatment of type 2 diabetes mellitus: An available administration strategy for antidiabetic phytocompounds. International Journal of Nanomedicine, 15, 10215–10240. https://doi.org/10.2147/IJN.S285134

Nogueira, L. F., Ribeiro, R. A., & Lima, R. R. (2013). Glibenclamide as an anti-diabetic agent: Pharmacodynamics and clinical use. Journal of Pharmacology & Pharmacotherapeutics, 4(4), 276-283. https://doi.org/10.4103/0976-500X.120469

Okemah, J., Peng, J., & Quiñones, M. (2018). Addressing clinical inertia in type 2 diabetes mellitus: A review. Advances in Therapy, 35, 1735–1745. https://doi.org/10.1007/s12325-018-0819-5

Park, Y., & Dembele, T. A. (2022). Application of nanoparticles: Diagnosis, therapeutics, and delivery of insulin/anti-diabetic drugs to enhance the therapeutic efficacy of diabetes mellitus. Life, 12(12), 2078. https://doi.org/10.3390/life12122078

Sastri, K.T., Radha, G.V., Pidikiti, S., & Vajjhala, P. (2020). Solid lipid nanoparticles: Preparation techniques, their characterization, and an update on recent studies. Journal of Applied Pharmaceutical Science, 10(1), 126–141. https://doi.org/10.7324/JAPS.2020.10617

Satake, T., Takai, K., Saito, S., & Shimasaki, H. (2002). The relationship between glycated hemoglobin and insulin sensitivity in diabetic patients. Diabetes Research and Clinical Practice, 57(2), 125-132. https://doi.org/10.1016/S0168-8227(02)00004-6

Satapathy, M.K., Yen, T.L., Jan, J.S., Tang, R.D., Wang, J.Y., Taliyan, R., Yang, C.H. (2021). Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics, 13(8), 1183. https://doi.org/10.3390/pharmaceutics13081183

Selvaraj, R., Pillai, V. M., & Sreenivasan, K. (2017). Nanoparticle-based drug delivery systems: A new frontier in drug formulation. Advanced Drug Delivery Reviews, 118, 97-108. https://doi.org/10.1016/j.addr.2017.08.004

Souto, E. B., & Silva, A. A. (2011). Nanocarriers for improving the bioavailability of poorly water-soluble anti-diabetic drugs. Nanomedicine: Nanotechnology, Biology, and Medicine, 7(6), 1-15. https://doi.org/10.1016/j.nano.2011.10.012

Souto, E. B., Lima, M. P., & Schapoval, E. E. (2011). Bioavailability and stability of oral anti-diabetic drugs: Challenges and solutions. European Journal of Pharmaceutical Sciences, 43(3), 137-149. https://doi.org/10.1016/j.ejps.2011.02.014

Sultana, A., Zare, M., Thomas, V., Kumar, T.S.S., & Ramakrishna, S. (2022). Nano-based drug delivery systems: Conventional drug delivery routes, recent developments, and future prospects. Medical Drug Discovery, 15, 100134. https://doi.org/10.1016/j.medidd.2022.100134

Surendiran, G., Sundaram, V., & Prabakaran, M. (2009). Lipid-based nanoparticles for controlled drug delivery. Journal of Applied Pharmaceutical Science, 1(5), 30-35. https://doi.org/10.7324/JAPS.2009.155

Unnikrishnan, R., Anjana, R. M., & Mohan, V. (2016). Diabetes mellitus and its complications in India. Nature Reviews Endocrinology, 12, 357–370. https://doi.org/10.1038/nrendo.2016.53

Veiseh, O., Sun, T., Zhang, M., & Bhattarai, N. (2015). Cancer nanomedicine: From targeted therapy to combination therapy. Trends in Molecular Medicine, 21(4), 223-232. https://doi.org/10.1016/j.molmed.2015.02.001

Vieira, C. S., Ferreira, D. R., & Silva, D. S. (2019). Improving bioavailability and stability of anti-diabetic drugs: Advances in drug delivery systems. International Journal of Nanomedicine, 14, 5083-5099. https://doi.org/10.2147/IJN.S221520

Wang, M., Wang, C., Ren, S., Pan, J., Wang, Y., Shen, Y., Zeng, Z., Cui, H., & Zhao, X. (2022). Versatile oral insulin delivery nano systems: From materials to nanostructures. International Journal of Molecular Sciences, 23(6), 3362. https://doi.org/10.3390/ijms23063362

Welengodage, I., & Katuwavila, N.P. (2024). Recent advancements in lipid nanoparticle technology for oral insulin delivery. University of Colombo Review, 5(1), 130–144. https://doi.org/10.4038/ucr.v5i1.134

Wong, T. P., Al-Salami, H., & Dass, C. R. (2017). Enhancing bioavailability and stability of anti-diabetic drugs using nanoparticle-based delivery systems. International Journal of Pharmaceutics, 525(1-2), 68-82. https://doi.org/10.1016/j.ijpharm.2017.03.017

World Health Organization (WHO). (2018). Diabetes. Retrieved from https://www.who.int/news-room/fact-sheets/detail/diabetes

World Health Organization. (2023). Global report on diabetes. Retrieved June 24, 2024, from https://www.who.int/news-room/fact-sheets/detail/diabetes

Yeung, C. K., Law, W. K., & Choi, H. M. (2019). Metformin in the management of type 2 diabetes: A review of the clinical evidence. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(4), 2081-2092. https://doi.org/10.1016/j.dsx.2019.04.032

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
30
View
0
Share