References
Bakris, G. L., & Ritz, E. (2009). The message for World Kidney Day 2009: Hypertension and kidney disease: A marriage that should be prevented. Kidney International, 75(8), 709–712. https://doi.org/10.1038/ki.2009.43
Bautista, L. E., Vera, L. M., Arenas, I. A., & Gamarra, G. (2005). Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-α) and essential hypertension. Journal of Human Hypertension, 19(2), 149–154. https://doi.org/10.1038/sj.jhh.1001799
Bidani, A. K., & Griffin, K. A. (2004). Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension, 44(5), 595–601. https://doi.org/10.1161/01.HYP.0000145850.28481.64
Boutouyrie, P., Tropeano, A. I., Asmar, R., Gautier, I., Benetos, A., Lacolley, P., & Laurent, S. (2002). Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: A longitudinal study. Hypertension, 39(1), 10–15. https://doi.org/10.1161/hy0102.099031
Brown, J. M., Siddiqui, M., Calhoun, D. A., Carey, R. M., Hopkins, P. N., Williams, G. H., & Vaidya, A. (2013). The renin-angiotensin-aldosterone system in the pathogenesis and treatment of hypertension. Nature Reviews Nephrology, 9(10), 539–553. https://doi.org/10.1038/nrneph.2013.141
Brown, N. J. (2008). Aldosterone and vascular inflammation. Hypertension, 51(2), 161–167. https://doi.org/10.1161/HYPERTENSIONAHA.107.093401
Carey, R. M., Calhoun, D. A., Bakris, G. L., Brook, R. D., Daugherty, S. L., Dennison Himmelfarb, C. R., ... & Whelton, P. K. (2017). Resistant hypertension: Detection, evaluation, and management: A scientific statement from the American Heart Association. Hypertension, 72(5), e53–e90. https://doi.org/10.1161/HYP.0000000000000084
Chen, Y., et al. (2022). Frontiers in Cell and Developmental Biology, 10, 913784. https://doi.org/10.3389/fcell.2022.913784
Cheng, X., et al. (2021). Hypertension Research, 44(3), 245–253. https://doi.org/10.1038/s41440-020-00585-3
Crowley, S. D., & Coffman, T. M. (2012). Recent advances involving the renin–angiotensin system. Hypertension, 60(2), 588–596. https://doi.org/10.1161/HYPERTENSIONAHA.111.189829
De Miguel, C., Guo, C., & Lund, H. (2015). Inflammation and hypertension: New understandings and potential therapeutic targets. Current Hypertension Reports, 17(1), 507. https://doi.org/10.1007/s11906-014-0507-4
El-Missiry, M. A., et al. (2007). Oxidative stress and circulating DNA as biomarkers in hypertension. Clinica Chimica Acta, 383(1–2), 58–64. https://doi.org/10.1016/j.cca.2007.05.012
Esler, M., Lambert, E., & Schlaich, M. (2010). Point: Chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. The Journal of Applied Physiology, 109(6), 1996–1998. https://doi.org/10.1152/japplphysiol.00491.2010
Franzén, O., Ermel, R., Cohain, A., Akers, N. K., Di Narzo, A., Talukdar, H. A., ... & Björkegren, J. L. M. (2021). Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science, 353(6301), 827–830. https://doi.org/10.1126/science.aad6970
Funder, J. W., Carey, R. M., Mantero, F., Murad, M. H., Reincke, M., Shibata, H., ... & Young, W. F. (2016). The management of primary aldosteronism: case detection, diagnosis, and treatment: An Endocrine Society Clinical Practice Guideline. Journal of Clinical Endocrinology & Metabolism, 101(5), 1889–1916. https://doi.org/10.1210/jc.2015-4061
GBD 2019 Risk Factors Collaborators. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258), 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2
Gerstein, H. C., et al. (2001). Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and non-diabetic individuals. JAMA, 286(4), 421–426. https://doi.org/10.1001/jama.286.4.421
Ghiadoni, L., et al. (2012). Endothelial function and hypertension. Journal of Hypertension, 30(3), 453–461. https://doi.org/10.1097/HJH.0b013e32834f0e2c
Guzik, T. J., et al. (2007). T cells and vascular inflammation in hypertension. Nature Clinical Practice Cardiovascular Medicine, 4(11), 616–623. https://doi.org/10.1038/ncpcardio1035
Hall, J. E., et al. (1999). Pressure–natriuresis relationship and salt sensitivity of blood pressure in hypertension. Hypertension, 33(3), 912–917. https://doi.org/10.1161/01.HYP.33.3.912
Harrison, D. G., & Gongora, M. C. (2009). Oxidative stress and hypertension. Medical Clinics of North America, 93(3), 621–635. https://doi.org/10.1016/j.mcna.2009.02.007
Harrison, D. G., et al. (2011). Inflammation, immunity, and hypertension. Hypertension, 57(2), 132–140. https://doi.org/10.1161/HYPERTENSIONAHA.110.163576
Ho, J. E., et al. (2021). Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure. JACC: Heart Failure, 9(2), 115–123. https://doi.org/10.1016/j.jchf.2020.10.008
Iadecola, C., & Davisson, R. L. (2008). Hypertension and cerebrovascular dysfunction. Cell Metabolism, 7(6), 476–484. https://doi.org/10.1016/j.cmet.2008.03.010
Intengan, H. D., & Schiffrin, E. L. (2001). Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension, 38(3), 581–587. https://doi.org/10.1161/hy09t1.093959
Itani, H. A., Xiao, L., Saleh, M. A., Wu, J., Pilkinton, M. A., Dale, B. L., ... & Harrison, D. G. (2020). CD70 exacerbates blood pressure elevation and renal damage in response to repeated hypertensive stimuli. Hypertension, 75(2), 466–476. https://doi.org/10.1161/HYPERTENSIONAHA.119.13461
Jhund, P. S., et al. (2009). N-terminal pro-BNP testing in primary care: Impact on heart failure diagnosis and mortality. European Heart Journal, 30(7), 857–866. https://doi.org/10.1093/eurheartj/ehn623
Jiang, L., et al. (2023). A multi-omics approach identifies novel predictors of hypertension progression. Nature Communications, 14, 2231. https://doi.org/10.1038/s41467-023-37427-z
Kobori, H., et al. (2007). The intrarenal renin–angiotensin system: From physiology to the pathobiology of hypertension and kidney disease. Pharmacological Reviews, 59(3), 251–287. https://doi.org/10.1124/pr.59.3.3
Kontaraki, J. E., et al. (2021). MicroRNA-21 and microRNA-155 are associated with resistant hypertension and inflammation. Journal of Human Hypertension, 35(1), 13–20. https://doi.org/10.1038/s41371-020-0356-3
Kucera, J., et al. (2021). Plasma 8-isoprostane and hypertension: Clinical implications of oxidative stress markers. Free Radical Biology and Medicine, 164, 267–275. https://doi.org/10.1016/j.freeradbiomed.2021.01.009
Laurent, S., et al. (2006). Expert consensus document on arterial stiffness: methodological issues and clinical applications. European Heart Journal, 27(21), 2588–2605. https://doi.org/10.1093/eurheartj/ehl254
Lee, H., Zhang, D., & Wu, J. (2020). Exosomal miRNAs in hypertension: Diagnostic and therapeutic opportunities. Hypertension Research, 43(8), 681–689. https://doi.org/10.1038/s41440-020-0435-8
Levey, A. S., et al. (2009). A new equation to estimate glomerular filtration rate. Annals of Internal Medicine, 150(9), 604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006
Lewington, S., et al. (2002). Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. The Lancet, 360(9349), 1903–1913. https://doi.org/10.1016/S0140-6736(02)11911-8
Li, J., et al. (2021). Gut microbiota-derived TMAO: A novel biomarker for hypertension. Hypertension Research, 44(5), 669–678. https://doi.org/10.1038/s41440-020-00579-1
Liu, L., et al. (2022). Metabolomics reveals branched-chain amino acid pathways associated with hypertension development. Circulation Research, 131(3), 250–262. https://doi.org/10.1161/CIRCRESAHA.122.320121
Lu, Y., et al. (2023). miRNA profiling in resistant hypertension: Insight into diagnostic and therapeutic biomarkers. Hypertension Research, 46(2), 256–265. https://doi.org/10.1038/s41440-022-00999-8
Ma, J., et al. (2023). Trimethylamine-N-oxide contributes to salt-sensitive hypertension via endothelial dysfunction. Hypertension, 80(2), 380–392. https://doi.org/10.1161/HYPERTENSIONAHA.122.20367
Maisel, A. S., et al. (2002). Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. New England Journal of Medicine, 347(3), 161–167. https://doi.org/10.1056/NEJMoa020233
McKie, P. M., et al. (2010). NT-proBNP and the prediction of new-onset hypertension. Hypertension, 56(4), 623–630. https://doi.org/10.1161/HYPERTENSIONAHA.110.156851
Mills, K. T., Bundy, J. D., Kelly, T. N., Reed, J. E., Kearney, P. M., Reynolds, K., ... & He, J. (2016). Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries. Circulation, 134(6), 441–450. https://doi.org/10.1161/CIRCULATIONAHA.115.018912
Mitchell, G. F., et al. (2010). Arterial stiffness and cardiovascular events. New England Journal of Medicine, 362(10), 917–927. https://doi.org/10.1056/NEJMoa090756
Muntner, P., Shimbo, D., Carey, R. M., Charleston, J. B., Gaillard, T., Misra, S., ... & Wright, J. T. (2019). Measurement of blood pressure in humans: A scientific statement from the American Heart Association. Hypertension, 73(5), e35–e66. https://doi.org/10.1161/HYP.0000000000000087
Norlander, A. E., Madhur, M. S., & Harrison, D. G. (2022). The immune system in hypertension. Current Hypertension Reports, 24(2), 1–11. https://doi.org/10.1007/s11906-022-01176-8
Oparil, S., et al. (2003). Pathogenesis of hypertension. Annals of Internal Medicine, 139(9), 761–776. https://doi.org/10.7326/0003-4819-139-9-200311040-00011
Paulus, W. J., & Tschöpe, C. (2013). A novel paradigm for heart failure with preserved ejection fraction. Journal of the American College of Cardiology, 62(4), 263–271. https://doi.org/10.1016/j.jacc.2013.02.092
Pérez-Gómez, M. V., Ortiz, A., & Morales, E. (2022). Biomarkers in arterial hypertension: New insights and clinical implications. Current Hypertension Reports, 24(5), 163–175. https://doi.org/10.1007/s11906-022-01159-9
Pluznick, J. L., et al. (2020). Short-chain fatty acid signaling and blood pressure regulation. Physiological Reviews, 100(4), 1727–1774. https://doi.org/10.1152/physrev.00032.2019
Rangel, I. C., et al. (2019). Epigenetic regulation in arterial hypertension. International Journal of Molecular Sciences, 20(15), 3828. https://doi.org/10.3390/ijms20153828
Richard, M. A., et al. (2021). DNA methylation loci associated with blood pressure and hypertension. Nature Communications, 12(1), 1–14. https://doi.org/10.1038/s41467-021-21313-6
Sesso, H. D., Buring, J. E., Rifai, N., Blake, G. J., Gaziano, J. M., & Ridker, P. M. (2003). C-reactive protein and the risk of developing hypertension. JAMA, 290(22), 2945–2951. https://doi.org/10.1001/jama.290.22.2945
Sun, Y., et al. (2021). Proteomic profiling in hypertension: Identification of early-stage biomarkers. Journal of Proteome Research, 20(4), 2030–2041. https://doi.org/10.1021/acs.jproteome.0c00960
Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E., Collins, K. J., Dennison Himmelfarb, C., ... & Wright, J. T. (2018). 2017 ACC/AHA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. Hypertension, 71(6), e13–e115. https://doi.org/10.1161/HYP.0000000000000065
World Health Organization. (2023). Hypertension. https://www.who.int/news-room/fact-sheets/detail/hypertension
Xu, Y., et al. (2022). Global DNA hypomethylation is associated with increased blood pressure in adults: A meta-analysis. Epigenetics, 17(5), 511–521. https://doi.org/10.1080/15592294.2022.2046655
Yan, Q., et al. (2022). Gut microbiota dysbiosis contributes to hypertension via SCFA-mediated GPR41 signaling. Nature Reviews Nephrology, 18(2), 77–89. https://doi.org/10.1038/s41581-021-00522-7
Yazdani, S., et al. (2021). MicroRNAs as biomarkers in hypertension: A systematic review. Journal of the Renin-Angiotensin-Aldosterone System, 22, 1–10. https://doi.org/10.1177/14703203211026044
Young, W. F. (2007). Primary aldosteronism: Renaissance of a syndrome. Clinical Endocrinology, 66(5), 607–618. https://doi.org/10.1111/j.1365-2265.2007.02899.x
Yuyun, M. F., et al. (2004). Microalbuminuria predicts cardiovascular mortality independently of conventional risk factors in a middle-aged cohort. Journal of the American Society of Nephrology, 15(6), 1834–1841. https://doi.org/10.1097/01.ASN.0000126466.18372.6B
Zhang, Y., et al. (2021). LINE-1 hypomethylation and hypertension: A meta-analysis of EWAS studies. Hypertension, 77(4), 1109–1118. https://doi.org/10.1161/HYPERTENSIONAHA.120.16517
Zhang, Y., et al. (2022). Associations of omega-3/6-derived oxylipins with blood pressure regulation in humans. Hypertension, 79(1), 120–130. https://doi.org/10.1161/HYPERTENSIONAHA.121.18374
Zhao, Y., Zhang, X., Zhang, J., Sun, Y., & Zhao, L. (2022). LncRNA-Ang362 promotes hypertension by enhancing vascular smooth muscle cell proliferation. Molecular Therapy – Nucleic Acids, 28, 208–219. https://doi.org/10.1016/j.omtn.2022.07.015
Zheng, Y., et al. (2021). Metabolomics of hypertension and risk of cardiovascular disease: The role of branched-chain amino acids. Hypertension, 77(3), 761–770. https://doi.org/10.1161/HYPERTENSIONAHA.120.16158
Zhou, X., et al. (2022). Exosomal miRNAs as early diagnostic biomarkers for essential hypertension. Hypertension Research, 45(6), 1002–1011. https://doi.org/10.1038/s41440-022-00859-5