Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Two Sides of Triglycerides in Atherogenesis: An Essential Contributor

Anastasia V. Poznyak 1*, Tatyana Vladimirovna Kirichenko 2,5, Tatiana Ivanovna Kovyanova 1,2, Irina Alexandrovna Starodubtseva 3, Dmitry Felixovich Beloyartsev 4, Vasily N. Sukhorukov 2, Alexander N. Orekhov 2

+ Author Affiliations

Journal of Angiotherapy 8(8) 1-12 https://doi.org/10.25163/angiotherapy.889751

Submitted: 16 June 2024  Revised: 07 August 2024  Published: 10 August 2024 

Abstract

Atherosclerosis is chronic arterial wall damage, which often results in cardiovascular disease development. Since atherosclerosis is almost asymptomatic, it is difficult to detect this condition, but it is even more difficult to deal with the consequences. The reasons for the development of atherosclerosis are still not completely clear, but the mechanisms involved in atherogenesis are known. Among them, lipid metabolism alterations, oxidative stress, as well as impaired mitochondrial function take pride of place. In our review, we want to dwell in more detail on such a component as lipid metabolism disorders. In particular, triglycerides, their levels, and influence on the development of the disease. Triglycerides provide the second-largest source of energy. In the context of atherosclerosis, the question arises, is an increase in the level of triglycerides in the blood a cause, a biomarker, or a consequence of the processes accompanying atherogenesis?

Keywords: Atherosclerosis; Lipids; Triglycerides.

References

Abdullah SM, Defina LF, Leonard D, Barlow CE, Radford NB, Willis BL, Rohatgi A, McGuire DK, de Lemos JA, Grundy SM, Berry JD, Khera A. Long-Term Association of Low-Density Lipoprotein Cholesterol With Cardiovascular Mortality in Individuals at Low 10-Year Risk of Atherosclerotic Cardiovascular Disease. Circulation. 2018 Nov 20;138(21):2315-2325. doi: 10.1161/CIRCULATIONAHA.118.034273. PMID: 30571575.

Ahmad Z, Banerjee P, Hamon S, Chan KC, Bouzelmat A, Sasiela WJ, Pordy R, Mellis S, Dansky H, Gipe DA, Dunbar RL. Inhibition of Angiopoietin-Like Protein 3 With a Monoclonal Antibody Reduces Triglycerides in Hypertriglyceridemia. Circulation. 2019 Aug 6;140(6):470-486. doi: 10.1161/CIRCULATIONAHA.118.039107. Epub 2019 Jun 27. Erratum in: Circulation. 2021 Mar 30;143(13):e799. PMID: 31242752; PMCID: PMC6686956.

Amin, M. N., Siddiqui, S. A., Ibrahim, M., Hakim, M. L., Ahammed, M. S., Kabir, A., & Sultana, F. (2020). Inflammatory cytokines in the pathogenesis of cardiovascular disease and cancer. SAGE open medicine, 8, 2050312120965752. https://doi.org/10.1177/2050312120965752

Basu, D., & Bornfeldt, K. E. (2020). Hypertriglyceridemia and Atherosclerosis: Using Human Research to Guide Mechanistic Studies in Animal Models. Frontiers in endocrinology, 11, 504. https://doi.org/10.3389/fendo.2020.00504

Behbodikhah, J., Ahmed, S., Elyasi, A., Kasselman, L. J., De Leon, J., Glass, A. D., & Reiss, A. B. (2021). Apolipoprotein B and Cardiovascular Disease: Biomarker and Potential Therapeutic Target. Metabolites, 11(10), 690. https://doi.org/10.3390/metabo11100690

Bleda S, De Haro J. NLRP1 inhibiting pathway to be explored in anti-atherosclerosis treatment approach. Int J Cardiol. 2019 Mar 1;278:265. doi: 10.1016/j.ijcard.2018.12.082. PMID: 30683329.

Blom DJ, Raal FJ, Santos RD, Marais AD. Lomitapide and Mipomersen-Inhibiting Microsomal Triglyceride Transfer Protein (MTP) and apoB100 Synthesis. Curr Atheroscler Rep. 2019 Nov 19;21(12):48. doi: 10.1007/s11883-019-0809-3. PMID: 31741187.

Calabresi L, Gomaraschi M, Simonelli S, Bernini F, Franceschini G. HDL and atherosclerosis: Insights from inherited HDL disorders. Biochim Biophys Acta. 2015 Jan;1851(1):13-8. doi: 10.1016/j.bbalip.2014.07.015. Epub 2014 Jul 25. PMID: 25068410.

Chait, A., Ginsberg, H. N., Vaisar, T., Heinecke, J. W., Goldberg, I. J., & Bornfeldt, K. E. (2020). Remnants of the Triglyceride-Rich Lipoproteins, Diabetes, and Cardiovascular Disease. Diabetes, 69(4), 508–516. https://doi.org/10.2337/dbi19-0007

Chapin, J. C., & Hajjar, K. A. (2015). Fibrinolysis and the control of blood coagulation. Blood reviews, 29(1), 17–24. https://doi.org/10.1016/j.blre.2014.09.003

Chistiakov DA, Revin VV, Sobenin IA, Orekhov AN, Bobryshev YV. Vascular endothelium: functioning in norm, changes in atherosclerosis and current dietary approaches to improve endothelial function. Mini Rev Med Chem 2015 15(4):338-350. doi: 10.2174/1389557515666150226114031.

Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation. Immunobiology 2015 220(6):833-844. doi: 10.1016/j.imbio.2014.12.010.

Ding WY, Protty MB, Davies IG, Lip GYH. Relationship between lipoproteins, thrombosis, and atrial fibrillation. Cardiovasc Res. 2022 Feb 21;118(3):716-731. doi: 10.1093/cvr/cvab017. PMID: 33483737; PMCID: PMC8859639.

Esfahani, M., Movahedian, A., Baranchi, M., & Goodarzi, M. T. (2015). Adiponectin: an adipokine with protective features against metabolic syndrome. Iranian journal of basic medical sciences, 18(5), 430–442.

Fan, J., Kitajima, S., Watanabe, T., Xu, J., Zhang, J., Liu, E., & Chen, Y. E. (2015). Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacology & therapeutics, 146, 104–119. https://doi.org/10.1016/j.pharmthera.2014.09.009

Feingold KR. Introduction to Lipids and Lipoproteins. [Updated 2021 Jan 19]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK305896/

Franczyk B, Rysz J, Lawinski J, Rysz-Górzynska M, Gluba-Brzózka A. Is a High HDL-Cholesterol Level Always Beneficial? Biomedicines. 2021 Aug 25;9(9):1083. doi: 10.3390/biomedicines9091083. PMID: 34572269; PMCID: PMC8466913.

Fujii Y, Nouso K, Matsushita H, Kariyama K, Sakurai T, Takahashi Y, Chiba H, Hui SP, Ito Y, Ohta M, Okada H. Low-Density Lipoprotein (LDL)-Triglyceride and Its Ratio to LDL-Cholesterol as Diagnostic Biomarkers for Nonalcoholic Steatohepatitis. J Appl Lab Med. 2020 Nov 1;5(6):1206-1215. doi: 10.1093/jalm/jfaa044. PMID: 32674154.

Gaudet D, Karwatowska-Prokopczuk E, Baum SJ, Hurh E, Kingsbury J, Bartlett VJ, Figueroa AL, Piscitelli P, Singleton W, Witztum JL, Geary RS, Tsimikas S, O'Dea LSL; Vupanorsen Study Investigators. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur Heart J. 2020 Oct 21;41(40):3936-3945. doi: 10.1093/eurheartj/ehaa689. PMID: 32860031; PMCID: PMC7750927.

Gimbrone, M. A., Jr, & García-Cardeña, G. (2016). Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circulation research, 118(4), 620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301

Ginsberg HN, Packard CJ, Chapman MJ, Borén J, Aguilar-Salinas CA, Averna M, Ference BA, Gaudet D, Hegele RA, Kersten S, Lewis GF, Lichtenstein AH, Moulin P, Nordestgaard BG, Remaley AT, Staels B, Stroes ESG, Taskinen MR, Tokgözoglu LS, Tybjaerg-Hansen A, Stock JK, Catapano AL. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021 Dec 14;42(47):4791-4806. doi: 10.1093/eurheartj/ehab551. PMID: 34472586; PMCID: PMC8670783.

Goldberg, I. J., & Bornfeldt, K. E. (2013). Lipids and the endothelium: bidirectional interactions. Current atherosclerosis reports, 15(11), 365. https://doi.org/10.1007/s11883-013-0365-1

Hajar R. (2017). Risk Factors for Coronary Artery Disease: Historical Perspectives. Heart views : the official journal of the Gulf Heart Association, 18(3), 109–114. https://doi.org/10.4103/HEARTVIEWS.HEARTVIEWS_106_17

Hussain, M. M., Nijstad, N., & Franceschini, L. (2011). Regulation of microsomal triglyceride transfer protein. Clinical lipidology, 6(3), 293–303. https://doi.org/10.2217/clp.11.21

Ivanova, E. A., Myasoedova, V. A., Melnichenko, A. A., Grechko, A. V., & Orekhov, A. N. (2017). Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. Oxidative medicine and cellular longevity, 2017, 1273042. https://doi.org/10.1155/2017/1273042

Jamkhande, P. G., Chandak, P. G., Dhawale, S. C., Barde, S. R., Tidke, P. S., & Sakhare, R. S. (2014). Therapeutic approaches to drug targets in atherosclerosis. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 22(3), 179–190. https://doi.org/10.1016/j.jsps.2013.04.005

Kajikawa M, Maruhashi T, Matsumoto T, Iwamoto Y, Iwamoto A, Oda N, Kishimoto S, Matsui S, Aibara Y, Hidaka T, Kihara Y, Chayama K, Goto C, Noma K, Nakashima A, Tomiyama H, Takase B, Yamashina A, Higashi Y. Relationship between serum triglyceride levels and endothelial function in a large community-based study. Atherosclerosis. 2016 Jun;249:70-5. doi: 10.1016/j.atherosclerosis.2016.03.035. Epub 2016 Apr 1. PMID: 27065244.

Kastelein JJP, Hsieh A, Dicklin MR, Ditmarsch M, Davidson MH. Obicetrapib: Reversing the Tide of CETP Inhibitor Disappointments. Curr Atheroscler Rep. 2024 Feb;26(2):35-44. doi: 10.1007/s11883-023-01184-1. Epub 2023 Dec 22. PMID: 38133847; PMCID: PMC10838241.

Kim K, Ginsberg HN, Choi SH. New, Novel Lipid-Lowering Agents for Reducing Cardiovascular Risk: Beyond Statins. Diabetes Metab J. 2022 Jul;46(4):517-532. doi: 10.4093/dmj.2022.0198. Epub 2022 Jul 27. Erratum in: Diabetes Metab J. 2022 Sep;46(5):817-818. PMID: 35929170; PMCID: PMC9353557.

Kim, J. A., Montagnani, M., Chandrasekran, S., & Quon, M. J. (2012). Role of lipotoxicity in endothelial dysfunction. Heart failure clinics, 8(4), 589–607. https://doi.org/10.1016/j.hfc.2012.06.012

Libby P. The changing landscape of atherosclerosis. Nature. 2021 Apr;592(7855):524-533. doi: 10.1038/s41586-021-03392-8. Epub 2021 Apr 21. PMID: 33883728.

Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, Gibson CM, Granger C, Menon V, Montalescot G, Rader D, Tall AR, McErlean E, Wolski K, Ruotolo G, Vangerow B, Weerakkody G, Goodman SG, Conde D, McGuire DK, Nicolau JC, Leiva-Pons JL, Pesant Y, Li W, Kandath D, Kouz S, Tahirkheli N, Mason D, Nissen SE; ACCELERATE Investigators. Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. N Engl J Med. 2017 May 18;376(20):1933-1942. doi: 10.1056/NEJMoa1609581. PMID: 28514624.

Linton MRF, Yancey PG, Davies SS, et al. The Role of Lipids and Lipoproteins in Atherosclerosis. [Updated 2019 Jan 3]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK343489/

Lipase Regulation in Atherosclerosis. Biomedicines, 9(7), 782. https://doi.org/10.3390/biomedicines9070782

Lucero D, López GI, Gorzalczany S, Duarte M, González Ballerga E, Sordá J, Schreier L, Zago V. Alterations in triglyceride rich lipoproteins are related to endothelial dysfunction in metabolic syndrome. Clin Biochem. 2016 Aug;49(12):932-5. doi: 10.1016/j.clinbiochem.2016.04.016. Epub 2016 May 18. PMID: 27208823.

Manduteanu, I., & Simionescu, M. (2012). Inflammation in atherosclerosis: a cause or a result of vascular disorders?. Journal of cellular and molecular medicine, 16(9), 1978–1990. https://doi.org/10.1111/j.1582-4934.2012.01552.

Marques, L. R., Diniz, T. A., Antunes, B. M., Rossi, F. E., Caperuto, E. C., Lira, F. S., & Gonçalves, D. C. (2018). Reverse Cholesterol Transport: Molecular Mechanisms and the Non-medical Approach to Enhance HDL Cholesterol. Frontiers in physiology, 9, 526. https://doi.org/10.3389/fphys.2018.00526

Matsumoto, S., Gotoh, N., Hishinuma, S., Abe, Y., Shimizu, Y., Katano, Y., & Ishihata, A. (2014). The role of hypertriglyceridemia in the development of atherosclerosis and endothelial dysfunction. Nutrients, 6(3), 1236–1250. https://doi.org/10.3390/nu6031236

Meneses, M. J., Silvestre, R., Sousa-Lima, I., & Macedo, M. P. (2019). Paraoxonase-1 as a Regulator of Glucose and Lipid Homeostasis: Impact on the Onset and Progression of Metabolic Disorders. International journal of molecular sciences, 20(16), 4049. https://doi.org/10.3390/ijms20164049

Miao M, Wang X, Liu T, Li YJ, Yu WQ, Yang TM, Guo SD. Targeting PPARs for therapy of atherosclerosis: A review. Int J Biol Macromol. 2023 Jul 1;242(Pt 2):125008. doi: 10.1016/j.ijbiomac.2023.125008. Epub 2023 May 20. PMID: 37217063.

Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants & redox signaling, 20(7), 1126–1167. https://doi.org/10.1089/ars.2012.5149

Moore, K. J., Sheedy, F. J., & Fisher, E. A. (2013). Macrophages in atherosclerosis: a dynamic balance. Nature reviews. Immunology, 13(10), 709–721. https://doi.org/10.1038/nri3520

Mundi, S., Massaro, M., Scoditti, E., Carluccio, M. A., van Hinsbergh, V., Iruela-Arispe, M. L., & De Caterina, R. (2018). Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review. Cardiovascular research, 114(1), 35–52. https://doi.org/10.1093/cvr/cvx226

Neyla de Lima Albuquerque M, da Silva Diniz A, Kruze Grande de Arruda I. APOLIPOPROTEINS AND THEIR ASSOCIATION WITH CARDIOMETABOLIC RISK BIOMARKERS IN ADOLESCENTS. Nutr Hosp. 2015 Dec 1;32(6):2674-83. doi: 10.3305/nh.2015.32.6.9779. PMID: 26667720.

Nicholls SJ, Lincoff AM, Garcia M, Bash D, Ballantyne CM, Barter PJ, Davidson MH, Kastelein JJP, Koenig W, McGuire DK, Mozaffarian D, Ridker PM, Ray KK, Katona BG, Himmelmann A, Loss LE, Rensfeldt M, Lundström T, Agrawal R, Menon V, Wolski K, Nissen SE. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA. 2020 Dec 8;324(22):2268-2280. doi: 10.1001/jama.2020.22258. PMID: 33190147; PMCID: PMC7667577.

Oscarsson J, Hurt-Camejo E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: a review. Lipids Health Dis. 2017 Aug 10;16(1):149. doi: 10.1186/s12944-017-0541-3. PMID: 28797250; PMCID: PMC5553798.

Packard CJ, Boren J, Taskinen MR. Causes and Consequences of Hypertriglyceridemia. Front Endocrinol (Lausanne). 2020 May 14;11:252. doi: 10.3389/fendo.2020.00252. PMID: 32477261; PMCID: PMC7239992.

Parham JS, Goldberg AC. Mipomersen and its use in familial hypercholesterolemia. Expert Opin Pharmacother. 2019 Feb;20(2):127-131. doi: 10.1080/14656566.2018.1550071. Epub 2018 Dec 10. PMID: 30526168; PMCID: PMC6438693.

Peng, J., Luo, F., Ruan, G., Peng, R., & Li, X. (2017). Hypertriglyceridemia and atherosclerosis. Lipids in health and disease, 16(1), 233. https://doi.org/10.1186/s12944-017-0625-0

Pradhan, A., Bhandari, M., Vishwakarma, P., & Sethi, R. (2020). Triglycerides and Cardiovascular Outcomes-Can We REDUCE-IT ?. The International journal of angiology : official publication of the International College of Angiology, Inc, 29(1), 2–11. https://doi.org/10.1055/s-0040-1701639

Prati F, Biccirè FG, Budassi S. Present and future of coronary risk assessment. Eur Heart J Suppl. 2021 Oct 8;23(Suppl E):E123-E127. doi: 10.1093/eurheartj/suab106. PMID: 34650370; PMCID: PMC8503411.

Rafieian-Kopaei, M., Setorki, M., Doudi, M., Baradaran, A., & Nasri, H. (2014). Atherosclerosis: process, indicators, risk factors and new hopes. International journal of preventive medicine, 5(8), 927–946.

Raposeiras-Roubin S, Rosselló X, Oliva B, Fernández-Friera L, Mendiguren JM, Andrés V, Bueno H, Sanz J, Martínez de Vega V, Abu-Assi E, Iñiguez A, Fernández-Ortiz A, Ibáñez B, Fuster V. Triglycerides and Residual Atherosclerotic Risk. J Am Coll Cardiol. 2021 Jun 22;77(24):3031-3041. doi: 10.1016/j.jacc.2021.04.059. PMID: 34140107; PMCID: PMC8215641.

Saenz-Medina, J., Muñoz, M., Rodriguez, C., Sanchez, A., Contreras, C., Carballido-Rodríguez, J., & Prieto, D. (2022). Endothelial Dysfunction: An Intermediate Clinical Feature between Urolithiasis and Cardiovascular Diseases. International journal of molecular sciences, 23(2), 912. https://doi.org/10.3390/ijms23020912

Sanda, G. M., Stancu, C. S., Deleanu, M., Toma, L., Niculescu, L. S., & Sima, A. V. (2021). Aggregated LDL turn human macrophages into foam cells and induce mitochondrial dysfunction without triggering oxidative or endoplasmic reticulum stress. PloS one, 16(1), e0245797. https://doi.org/10.1371/journal.pone.0245797

Sandesara, P. B., Virani, S. S., Fazio, S., & Shapiro, M. D. (2019). The Forgotten Lipids: Triglycerides, Remnant Cholesterol, and Atherosclerotic Cardiovascular Disease Risk. Endocrine reviews, 40(2), 537–557. https://doi.org/10.1210/er.2018-00184

Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, Chaitman BR, Holme IM, Kallend D, Leiter LA, Leitersdorf E, McMurray JJ, Mundl H, Nicholls SJ, Shah PK, Tardif JC, Wright RS; dal-OUTCOMES Investigators. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012 Nov 29;367(22):2089-99. doi: 10.1056/NEJMoa1206797. Epub 2012 Nov 5. PMID: 23126252.

Shemesh, E., & Zafrir, B. (2019). Hypertriglyceridemia-Related Pancreatitis In Patients With Type 2 Diabetes: Links And Risks. Diabetes, metabolic syndrome and obesity : targets and therapy, 12, 2041–2052. https://doi.org/10.2147/DMSO.S188856

Sniderman, A. D., Thanassoulis, G., Glavinovic, T., Navar, A. M., Pencina, M., Catapano, A., & Ference, B. A. (2019). Apolipoprotein B Particles and Cardiovascular Disease: A Narrative Review. JAMA cardiology, 4(12), 1287–1295. https://doi.org/10.1001/jamacardio.2019.3780

Sobenin IA, Mitrofanov KY, Zhelankin AV, Sazonova MA, Postnov AY, Revin VV, Bobryshev YV, Orekhov AN. Quantitative assessment of heteroplasmy of mitochondrial genome: perspectives in diagnostics and methodological pitfalls. Biomed Res Int 2014 2014:292017. doi: 10.1155/2014/292017.

Sobenin IA, Salonen JT, Zhelankin AV, Melnichenko AA, Kaikkonen J, Bobryshev YV, Orekhov AN. Low density lipoprotein-containing circulating immune complexes: role in atherosclerosis and diagnostic value. Biomed Res Int 2014 2014:205697. doi: 10.1155/2014/205697.

Sobenin IA, Sazonova MA, Postnov AY, Bobryshev YV, Orekhov AN. Changes of mitochondria in atherosclerosis: possible determinant in the pathogenesis of the disease. Atherosclerosis. 2013 227(2):283-288. doi: 10.1016/j.atherosclerosis.2013.01.006.

Sobenin IA, Sazonova MA, Postnov AY, Bobryshev YV, Orekhov AN. Mitochondrial mutations are associated with atherosclerotic lesions in the human aorta. Clin Dev Immunol. 2012 2012:832464. doi:10.1155/2012/832464.

Sobenin IA, Sazonova MA, Postnov AY, Salonen JT, Bobryshev YV, Orekhov AN. Association of mitochondrial genetic variation with carotid atherosclerosis. PLoS One. 2013 8(7):e68070. doi: 10.1371/journal.pone.0068070.

Stefanutti C. Lomitapide-a Microsomal Triglyceride Transfer Protein Inhibitor for Homozygous Familial Hypercholesterolemia. Curr Atheroscler Rep. 2020 Jun 18;22(8):38. doi: 10.1007/s11883-020-00858-4. Erratum in: Curr Atheroscler Rep. 2020 Jul 15;22(8):41. PMID: 32557261; PMCID: PMC7303073.

Sukhorukov VN, Khotina VA, Chegodaev YS, Ivanova E, Sobenin IA, Orekhov AN. Lipid Metabolism in Macrophages: Focus on Atherosclerosis. Biomedicines. 2020 Aug 1;8(8):262. doi: 10.3390/biomedicines8080262. PMID: 32752275; PMCID: PMC7459513.

Summerhill, V. I., Grechko, A. V., Yet, S. F., Sobenin, I. A., & Orekhov, A. N. (2019). The Atherogenic Role of Circulating Modified Lipids in Atherosclerosis. International journal of molecular sciences, 20(14), 3561. https://doi.org/10.3390/ijms20143561

Taskinen MR, Björnson E, Kahri J, Söderlund S, Matikainen N, Porthan K, Ainola M, Hakkarainen A, Lundbom N, Fermanelli V, Fuchs J, Thorsell A, Kronenberg F, Andersson L, Adiels M, Packard CJ, Borén J. Effects of Evolocumab on the Postprandial Kinetics of Apo (Apolipoprotein) B100- and B48-Containing Lipoproteins in Subjects With Type 2 Diabetes. Arterioscler Thromb Vasc Biol. 2021 Feb;41(2):962-975. doi: 10.1161/ATVBAHA.120.315446. Epub 2020 Dec 24. PMID: 33356392.

Thakkar, H., Vincent, V., Sen, A., Singh, A., & Roy, A. (2021). Changing Perspectives on HDL: From Simple Quantity Measurements to Functional Quality Assessment. Journal of lipids, 2021, 5585521. https://doi.org/10.1155/2021/5585521

Toth, P. P., Shah, P. K., & Lepor, N. E. (2020). Targeting hypertriglyceridemia to mitigate cardiovascular risk: A review. American journal of preventive cardiology, 3, 100086. https://doi.org/10.1016/j.ajpc.2020.100086

Tran-Dinh, A., Diallo, D., Delbosc, S., Varela-Perez, L. M., Dang, Q. B., Lapergue, B., Burillo, E., Michel, J. B., Levoye, A., Martin-Ventura, J. L., & Meilhac, O. (2013). HDL and endothelial protection. British journal of pharmacology, 169(3), 493–511. https://doi.org/10.1111/bph.12174

Ueda M, Wolska A, Burke FM, Escobar M, Walters L, Lalic D, Hegele RA, Remaley AT, Rader DJ, Dunbar RL.. Experimental therapeutics for challenging clinical care of a patient with an extremely rare homozygous APOC2 mutation. Case Rep Endocrinol 2020;2020:1–6

Upadhyay R. K. (2015). Emerging risk biomarkers in cardiovascular diseases and disorders. Journal of lipids, 2015, 971453. https://doi.org/10.1155/2015/971453

van Capelleveen JC, Bochem AE, Motazacker MM, Hovingh GK, Kastelein JJ. Genetics of HDL-C: a causal link to atherosclerosis? Curr Atheroscler Rep. 2013 Jun;15(6):326. doi: 10.1007/s11883-013-0326-8. PMID: 23591671.

Welty F. K. (2013). How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis?. Current cardiology reports, 15(9), 400. https://doi.org/10.1007/s11886-013-0400-4

Witztum JL, Gaudet D, Freedman SD, Alexander VJ, Digenio A, Williams KR, Yang Q, Hughes SG, Geary RS, Arca M, Stroes ESG, Bergeron J, Soran H, Civeira F, Hemphill L, Tsimikas S, Blom DJ, O'Dea L, Bruckert E. Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. N Engl J Med. 2019 Aug 8;381(6):531-542. doi: 10.1056/NEJMoa1715944. PMID: 31390500.

Yamashita S, Masuda D, Matsuzawa Y. Pemafibrate, a New Selective PPARα Modulator: Drug Concept and Its Clinical Applications for Dyslipidemia and Metabolic Diseases. Curr Atheroscler Rep. 2020 Jan 23;22(1):5. doi: 10.1007/s11883-020-0823-5. PMID: 31974794; PMCID: PMC6978439.

Yamashita S, Rizzo M, Su TC, Masuda D. Novel Selective PPARα Modulator Pemafibrate for Dyslipidemia, Nonalcoholic Fatty Liver Disease (NAFLD), and Atherosclerosis. Metabolites. 2023 May 2;13(5):626. doi: 10.3390/metabo13050626. PMID: 37233667; PMCID: PMC10221566.

Zhang BH, Yin F, Qiao YN, Guo SD. Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Front Mol Biosci. 2022 May 25;9:909151. doi: 10.3389/fmolb.2022.909151. PMID: 35693558; PMCID: PMC9174947.

Zhang, X., Sessa, W. C., & Fernández-Hernando, C. (2018). Endothelial Transcytosis of Lipoproteins in Atherosclerosis. Frontiers in cardiovascular medicine, 5, 130. https://doi.org/10.3389/fcvm.2018.00130

Zhao, Y., Liu, L., Yang, S., Liu, G., Pan, L., Gu, C., Wang, Y., Li, D., Zhao, R., & Wu, M. (2021). Mechanisms of Atherosclerosis Induced by Postprandial Lipemia. Frontiers in cardiovascular medicine, 8, 636947. https://doi.org/10.3389/fcvm.2021.636947

Zhong Q, Nong Q, Mao B, Pan X, Meng L. Association of Impaired Vascular Endothelial Function with Increased Cardiovascular Risk in Asymptomatic Adults. Biomed Res Int. 2018 Oct 2;2018:3104945. doi: 10.1155/2018/3104945. PMID: 30386792; PMCID: PMC6189691.

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



1
Save
0
Citation
115
View
0
Share