Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Enhanced ResNet50 Model for Aqueous Solubility Prediction of Drug Compounds Using Deep Learning Techniques

Omprakash Dewangan 1*, Vasani Vaibhav Prakash 1

+ Author Affiliations

Journal of Angiotherapy 8(9) 1-6 https://doi.org/10.25163/angiotherapy.899869

Submitted: 09 July 2024  Revised: 29 August 2024  Published: 01 September 2024 

Abstract

Background: Aqueous Solubility (AS) is a critical factor in drug discovery (DD), directly influencing a drug’s bioavailability and overall efficacy. Accurate prediction of AS remains a challenge despite the advancement in machine learning techniques, which are essential for improving the pharmacokinetics and formulation of new compounds. Methods: This study determines an enhanced ResNet50 deep learning architecture for predicting AS in drug compounds. Deep-net models with 8, 16, and 20-layer ResNet50 Convolutional Neural Network (CNN) architectures were developed. A dataset of 9,532 drug compounds, represented by molecular footprints, was used to train the models. The training process utilized a ten-fold cross-validation technique to optimize the model's predictive performance. Results: The 20-layer ResNet50 model outperformed human experts and shallower models, achieving an R² value of 0.423 and an RMSE of 0.678. The model also demonstrated an impressive ASP accuracy rate of 90.6%, significantly surpassing the predictions made by human experts and simpler neural network models. Conclusion: This study demonstrates that deeper-net architectures, particularly the 20-layer ResNet50 model, offer superior performance in predicting AS. These deep learning models provide a reliable and efficient solution for improving solubility predictions, crucial for advancing drug discovery efforts.

Keywords: Aqueous Solubility, Drug Discovery, Prediction, ResNet50, Convolutional Neural Network, Deep Learning.

References

Bennett-Lenane, H., Griffin, B. T., & O'Shea, J. P. (2022). Machine learning methods for prediction of food effects on bioavailability: A comparison of support vector machines and artificial neural networks. European Journal of Pharmaceutical Sciences, 168, 106018.

Bobir, A.O., Askariy, M., Otabek, Y.Y., Nodir, R.K., Rakhima, A., Zukhra, Z.Y., & Sherzod, A.A. (2024). Utilizing deep learning and the internet of things to monitor the health of aquatic ecosystems to conserve biodiversity. Natural and Engineering Sciences, 9(1), 72-83.

Cai, H., Chen, T., Niu, R., & Plaza, A. (2021). Landslide detection using densely connected convolutional networks and environmental conditions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 5235-5247.

Deore, A. B., Dhumane, J. R., Wagh, R., & Sonawane, R. (2019). The stages of drug discovery and development process. Asian Journal of Pharmaceutical Research and Development, 7(6), 62-67.

Fan, Y., & Yang, W. (2022). A backpropagation learning algorithm with graph regularization for feedforward neural networks. Information Sciences, 607, 263-277.

Francoeur, P. G., & Koes, D. R. (2021). SolTranNet–A machine learning tool for fast aqueous solubility prediction. Journal of Chemical Information and Modeling, 61(6), 2530-2536.

Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R. K., & Kumar, P. (2021). Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Molecular Diversity, 25, 1315-1360.

Huuskonen, J. (2000). Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. Journal of Chemical Information and Computer Sciences, 40(3), 773-777.

Lovric, M., Pavlovic, K., Žuvela, P., Spataru, A., Lucic, B., Kern, R., & Wong, M. W. (2021). Machine learning in prediction of intrinsic aqueous solubility of drug-like compounds: Generalization, complexity, or predictive ability? Journal of Chemometrics, 35(7-8), e3349.

P. Vijayakumar, Sivasubramaniyan, G., & Saraswati Rao, M. (2019). Bibliometric analysis of Indian Journal of Nuclear Medicine (2014–2018). Indian Journal of Information Sources and Services, 9(1), 122-127.

Rika, R., Bob, S. R., & Suparni, S. (2023). Comparative analysis of support vector machine and convolutional neural network for malaria parasite classification and feature extraction. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 14(3), 194-217.

Salman, R., & Banu, A. A. (2023). DeepQ residue analysis of computer vision dataset using support vector machine. Journal of Internet Services and Information Security, 13(1), 78-84.

Sovannarith, H., Phet, A., & Chakchai, S. (2023). A novel video-on-demand caching scheme using hybrid fuzzy logic least frequency and recently used with support vector machine. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 14(1), 15-36.

Surendar, A., Veerappan, S., Sadulla, S., & Arvinth, N. (2024). Lung cancer segmentation and detection using KMP algorithm. Onkologia i Radioterapia, 18(4).

Tetko, I. V., Tanchuk, V. Y., Kasheva, T. N., & Villa, A. E. (2001). Estimation of aqueous solubility of chemical compounds using E-state indices. Journal of Chemical Information and Computer Sciences, 41(6), 1488-1493.

Wang, G., & Qiao, J. (2021). An efficient self-organizing deep fuzzy neural network for nonlinear system modeling. IEEE Transactions on Fuzzy Systems, 30(7), 2170-2182.

Wu, K., Zhao, Z., Wang, R., & Wei, G. W. (2018). TopP–S: Persistent homology-based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility. Journal of Computational Chemistry, 39(20), 1444-1454.

Zheng, H., Wu, Y., Deng, L., Hu, Y., & Li, G. (2021, May). Going deeper with directly-trained larger spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 12, pp. 11062-11070).

Francoeur, P. G., & Koes, D. R. (2021). SolTranNet–A machine learning tool for fast aqueous solubility prediction. Journal of Chemical Information and Modeling, 61(6), 2530–2536.

Huuskonen, J. (2000). Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. Journal of Chemical Information and Computer Sciences, 40(3), 773–777.

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



14
Save
0
Citation
125
View
0
Share