Integrative Biomedical Research | Online ISSN  2207-872X
REVIEWS   (Open Access)

Autoimmunity and Chronic Inflammation in the Development of Atherosclerosis: New Treatment Strategies

Alexander V. Blagov1*, Vladislav A. Kalmykov1, Olga N. Maltseva2, Alikhan Z. Asoyan1, Anastasia O. Maksaeva1,3, Alexander N. Orekhov1,4*

+ Author Affiliations

Journal of Angiotherapy 9(1) 1-8 https://doi.org/10.25163/angiotherapy.9110180

Submitted: 02 January 2025  Revised: 06 February 2025  Published: 10 February 2025 

Abstract

Atherosclerosis, the leading cause of cardiovascular diseases, is a chronic inflammatory disorder driven by complex interactions between the innate and adaptive immune systems. Extensive research in both preclinical models and human studies has established the critical role of immune cells in sustaining vascular inflammation and promoting plaque development. Monocytes/macrophages, lymphocytes, neutrophils, mast cells, NK cells, and dendritic cells infiltrate atherosclerotic plaques, influencing disease progression through their activation and cytokine-mediated responses. Single-cell transcriptomic analyses have revealed distinct immune cell phenotypes, emphasizing their heterogeneity and functional dynamics in plaque formation, rupture, and resolution. Understanding the pathways involved in immune cell homing, activation, and regulation is essential for developing targeted therapies. Emerging anti-inflammatory interventions have shown promise in clinical trials, including IL-1β inhibitors (canakinumab), IL-6 antagonists (ziltivekimab), NLRP3 inflammasome inhibitors (colchicine, dapansutrile), and p38 MAPK inhibitors (losmapimod). These therapies aim to modulate inflammatory signaling and reduce cardiovascular risk. Additionally, nanoparticle-based imaging and drug delivery strategies are being explored to enhance precision medicine approaches in stabilizing plaques. However, balancing immune suppression with maintaining vascular homeostasis remains a challenge, necessitating further research to optimize therapeutic efficacy. This review provides an updated perspective on the immunological mechanisms underlying atherosclerosis and highlights novel anti-inflammatory strategies with potential clinical implications for cardiovascular disease management.

Keywords: Atherosclerosis, Immune Regulation, Inflammatory Pathways, Plaque Stabilization, Targeted Therapies

References

Aguilar-Ballester, M., Herrero-Cervera, A., Vinué, Á., Martínez-Hervás, S., & González-Navarro, H. (2020). Impact of cholesterol metabolism in immune cell function and atherosclerosis. Nutrients, 12(7), 2021. https://doi.org/10.3390/nu12072021

Amirfakhryan, H. (2020). Vaccination against atherosclerosis: An overview. Hellenic Journal of Cardiology, 61(2), 78–91. https://doi.org/10.1016/j.hjc.2019.07.003

Antonopoulos, A. S., Papanikolaou, E., Vogiatzi, G., Oikonomou, E., & Tousoulis, D. (2018). Anti-inflammatory agents in peripheral arterial disease. Current Opinion in Pharmacology, 39, 1–8. https://doi.org/10.1016/j.coph.2017.11.001

Bäck, M., Yurdagul, A., Jr., Tabas, I., Öörni, K., & Kovanen, P. T. (2019). Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nature Reviews Cardiology, 16(7), 389–406. https://doi.org/10.1038/s41569-019-0169-2

Barrett, T. J. (2020). Macrophages in atherosclerosis regression. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(1), 20–33. https://doi.org/10.1161/ATVBAHA.119.312802

Basatemur, G. L., Jørgensen, H. F., Clarke, M. C. H., Bennett, M. R., & Mallat, Z. (2019). Vascular smooth muscle cells in atherosclerosis. Nature Reviews Cardiology, 16(12), 727–744. https://doi.org/10.1038/s41569-019-0227-9

Bonaccorsi, I., Spinelli, D., Cantoni, C., Barillà, C., Pipitò, N., De Pasquale, C., Oliveri, D., Cavaliere, R., Carrega, P., Benedetto, F., & Ferlazzo, G. (2019). Symptomatic carotid atherosclerotic plaques are associated with increased infiltration of natural killer (NK) cells and higher serum levels of NK activating receptor ligands. Frontiers in Immunology, 10, 1503. https://doi.org/10.3389/fimmu.2019.01503

Casella, I. B., & Presti, C. (2020). A new era of medical therapy for peripheral artery disease. Jornal Vascular Brasileiro, 19, e20190056. https://doi.org/10.1590/1677-5449.190056

Chen, W., Schilperoort, M., Cao, Y., Shi, J., Tabas, I., & Tao, W. (2022). Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nature Reviews Cardiology, 19(4), 228–249. https://doi.org/10.1038/s41569-021-00629-x

Clark, B. C., & Arnold, W. D. (2021). Strategies to prevent serious fall injuries: A commentary on Bhasin et al. A randomized trial of a multifactorial strategy to prevent serious fall injuries. Advances in Geriatric Medicine and Research, 3(1), e210002. https://doi.org/10.20900/agmr20210002

Clement, M., Raffort, J., Lareyre, F., Tsiantoulas, D., Newland, S., Lu, Y., Masters, L., Harrison, J., Saveljeva, S., Ma, M. K. L., Ozsvar-Kozma, M., Lam, B. Y. H., Yeo, G. S. H., Binder, C. J., Kaser, A., & Mallat, Z. (2019). Impaired autophagy in CD11b+ dendritic cells expands CD4+ regulatory T cells and limits atherosclerosis in mice. Circulation Research, 125(11), 1019–1034. https://doi.org/10.1161/CIRCRESAHA.119.315248

Del Buono, M. G., Crea, F., Versaci, F., & Biondi-Zoccai, G. (2021). NLRP3 inflammasome: A new promising therapeutic target to treat heart failure. Journal of Cardiovascular Pharmacology, 77(2), 159–161. https://doi.org/10.1097/FJC.00000000000000946

Dounousi, E., Duni, A., Naka, K. K., Vartholomatos, G., & Zoccali, C. (2021). The innate immune system and cardiovascular disease in ESKD: Monocytes and natural killer cells. Current Vascular Pharmacology, 19(1), 63–76. https://doi.org/10.2174/1570161118666200628024027

Fernandez, D. M., Rahman, A. H., Fernandez, N. F., Chudnovskiy, A., Amir, E. D., Amadori, L., Khan, N. S., Wong, C. K., Shamailova, R., Hill, C. A., Wang, Z., Remark, R., Li, J. R., Pina, C., Faries, C., Awad, A. J., Moss, N., Bjorkegren, J. L. M., Kim-Schulze, S., Gnjatic, S., … Giannarelli, C. (2019). Single-cell immune landscape of human atherosclerotic plaques. Nature Medicine, 25(10), 1576–1588. https://doi.org/10.1038/s41591-019-0590-4

Franck, G., Mawson, T., Sausen, G., Salinas, M., Masson, G. S., Cole, A., Beltrami-Moreira, M., Chatzizisis, Y., Quillard, T., Tesmenitsky, Y., Shvartz, E., Sukhova, G. K., Swirski, F. K., Nahrendorf, M., Aikawa, E., Croce, K. J., & Libby, P. (2017). Flow perturbation mediates neutrophil recruitment and potentiates endothelial injury via TLR2 in mice: Implications for superficial erosion. Circulation Research, 121(1), 31–42. https://doi.org/10.1161/CIRCRESAHA.117.310694

Fras, Z., Tršan, J., & Banach, M. (2020). On the present and future role of Lp-PLA2 in atherosclerosis-related cardiovascular risk prediction and management. Archives of Medical Science: AMS, 17(4), 954–964. https://doi.org/10.5114/aoms.2020.98195

Gerlach, B. D., Ampomah, P. B., Yurdagul, A., Jr., Liu, C., Lauring, M. C., Wang, X., Kasikara, C., Kong, N., Shi, J., Tao, W., & Tabas, I. (2021). Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metabolism, 33(12), 2445–2463.e8. https://doi.org/10.1016/j.cmet.2021.10.015

Hermans, M., Lennep, J. R. V., van Daele, P., & Bot, I. (2019). Mast cells in cardiovascular disease: From bench to bedside. International Journal of Molecular Sciences, 20(14), 3395. https://doi.org/10.3390/ijms20143395

Hoffman, H. M., & Broderick, L. (2016). The role of the inflammasome in patients with autoinflammatory diseases. The Journal of Allergy and Clinical Immunology, 138(1), 3–14. https://doi.org/10.1016/j.jaci.2016.05.001

Huang, X., Liu, C., Kong, N., Xiao, Y., Yurdagul, A., Jr., Tabas, I., & Tao, W. (2022). Synthesis of siRNA nanoparticles to silence plaque-destabilizing gene in atherosclerotic lesional macrophages. Nature Protocols, 17(3), 748–780. https://doi.org/10.1038/s41596-021-00665-4

Josefs, T., Barrett, T. J., Brown, E. J., Quezada, A., Wu, X., Voisin, M., Amengual, J., & Fisher, E. A. (2020). Neutrophil extracellular traps promote macrophage inflammation and impair atherosclerosis resolution in diabetic mice. JCI Insight, 5(7), e134796. https://doi.org/10.1172/jci.insight.134796

Khoury, M. K., Yang, H., & Liu, B. (2021). Macrophage biology in cardiovascular diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(2), e77–e81. https://doi.org/10.1161/ATVBAHA.120.313584

Kouhpeikar, H., Delbari, Z., Sathyapalan, T., Simental-Mendía, L. E., Jamialahmadi, T., & Sahebkar, A. (2020). The effect of statins through mast cells in the pathophysiology of atherosclerosis: A review. Current Atherosclerosis Reports, 22(5), 19. https://doi.org/10.1007/s11883-020-00837-9

Kyaw, T., Loveland, P., Kanellakis, P., Cao, A., Kallies, A., Huang, A. L., Peter, K., Toh, B. H., & Bobik, A. (2021). Alarmin-activated B cells accelerate murine atherosclerosis after myocardial infarction plasma via cell-immunoglobulin-dependent mechanisms. European Heart Journal, 42(9), 938–947. https://doi.org/10.1093/eurheartj/ehaa995

Ley, K. (2020). Role of the immune adaptive system in atherosclerosis. Biochemical Society Transactions, 48(5), 2273–2281. https://doi.org/10.1042/BST20200602

Li, Y., Wang, F., Imani, S., Tao, L., Deng, Y., & Cai, Y. (2021). Natural killer cells: Friend or foe in metabolic diseases? Frontiers in Immunology, 12, 614429. https://doi.org/10.3389/fimmu.2021.614429

Libby, P. (2021). Inflammation in atherosclerosis—No longer a theory. Clinical Chemistry, 67(1), 131–142. https://doi.org/10.1093/clinchem/hvaa275

Mangge, H., Prüller, F., Schnedl, W., Renner, W., & Almer, G. (2020). Beyond macrophages and T cells: B cells and immunoglobulins determine the fate of the atherosclerotic plaque. International Journal of Molecular Sciences, 21(11), 4082. https://doi.org/10.3390/ijms21114082

Nidorf, S. M., Fiolet, A. T. L., Mosterd, A., Eikelboom, J. W., Schut, A., Opstal, T. S. J., The, S. H. K., Xu, X. F., Ireland, M. A., Lenderink, T., Latchem, D., Hoogslag, P., Jerzewski, A., Nierop, P., Whelan, A., Hendriks, R., Swart, H., Schaap, J., Kuijper, A. F. M., van Hessen, M. W. J., … LoDoCo2 Trial Investigators. (2020). Colchicine in patients with chronic coronary disease. The New England Journal of Medicine, 383(19), 1838–1847. https://doi.org/10.1056/NEJMoa2021372

Opstal, T. S. J., Hoogeveen, R. M., Fiolet, A. T. L., Silvis, M. J. M., The, S. H. K., Bax, W. A., de Kleijn, D. P. V., Mosterd, A., Stroes, E. S. G., & Cornel, J. H. (2020). Colchicine attenuates inflammation beyond the inflammasome in chronic coronary artery disease: A LoDoCo2 proteomic substudy. Circulation, 142(20), 1996–1998. https://doi.org/10.1161/CIRCULATIONAHA.120.050560

Pergola, P. E., Devalaraja, M., Fishbane, S., Chonchol, M., Mathur, V. S., Smith, M. T., Lo, L., Herzog, K., Kakkar, R., & Davidson, M. H. (2021). Ziltivekimab for treatment of anemia of inflammation in patients on hemodialysis: Results from a phase 1/2 multicenter, randomized, double-blind, placebo-controlled trial. Journal of the American Society of Nephrology: JASN, 32(1), 211–222. https://doi.org/10.1681/ASN.2020050595

Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H., Ballantyne, C., Fonseca, F., Nicolau, J., Koenig, W., Anker, S. D., Kastelein, J. J. P., Cornel, J. H., Pais, P., Pella, D., Genest, J., Cifkova, R., Lorenzatti, A., Forster, T., Kobalava, Z., Vida-Simiti, L., … CANTOS Trial Group. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England Journal of Medicine, 377(12), 1119–1131. https://doi.org/10.1056/NEJMoa1707914

Rincón-Arévalo, H., Quintero, J. C., Fortich, F., Rojas, M., Vásquez, G., Castaño, D., & Yassin, L. M. (2020). Low frequency of IL-10+ B cells in patients with atherosclerosis is related with inflammatory condition. Heliyon, 6(3), e03441. https://doi.org/10.1016/j.heliyon.2020.e03441

Saigusa, R., Winkels, H., & Ley, K. (2020). T cell subsets and functions in atherosclerosis. Nature Reviews Cardiology, 17(7), 387–401. https://doi.org/10.1038/s41569-020-0352-5

Santoso, A., Heriansyah, T., & Rohman, M. S. (2020). Phospholipase A2 is an inflammatory predictor in cardiovascular diseases: Is there any spacious room to prove the causation? Current Cardiology Reviews, 16(1), 3–10. https://doi.org/10.2174/1573403X1601201911082710

Schäfer, S., & Zernecke, A. (2020). CD8+ T cells in atherosclerosis. Cells, 10(1), 37. https://doi.org/10.3390/cells10010037

Schumski, A., Ortega-Gómez, A., Wichapong, K., Winter, C., Lemnitzer, P., Viola, J. R., Pinilla-Vera, M., Folco, E., Solis-Mezarino, V., Völker-Albert, M., Maas, S. L., Pan, C., Perez Olivares, L., Winter, J., Hackeng, T., Karlsson, M. C. I., Zeller, T., Imhof, A., Baron, R. M., Nicolaes, G. A. F., … Soehnlein, O. (2021). Endotoxinemia accelerates atherosclerosis through electrostatic charge-mediated monocyte adhesion. Circulation, 143(3), 254–266. https://doi.org/10.1161/CIRCULATIONAHA.120.046677

Sekiya, T., & Yoshimura, A. (2016). In vitro Th differentiation protocol. Methods in Molecular Biology, 1344, 183–191. https://doi.org/10.1007/978-1-4939-2966-5_10

Sun, Y., Long, J., Chen, W., Sun, Y., Zhou, L., Zhang, L., Zeng, H., & Yuan, D. (2021). Alisol B 23-acetate, a new promoter for cholesterol efflux from dendritic cells, alleviates dyslipidemia and inflammation in advanced atherosclerotic mice. International Immunopharmacology, 99, 107956. https://doi.org/10.1016/j.intimp.2021.107956

Tun, B., & Frishman, W. H. (2018). Effects of anti-inflammatory medications in patients with coronary artery disease: A focus on losmapimod. Cardiology in Review, 26(3), 152–156. https://doi.org/10.1097/CRD.0000000000000176

Tyrrell, D. J., & Goldstein, D. R. (2021). Ageing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6. Nature Reviews Cardiology, 18(1), 58–68. https://doi.org/10.1038/s41569-020-0431-7

van Duijn, J., Kritikou, E., Benne, N., van der Heijden, T., van Puijvelde, G. H., Kröner, M. J., Schaftenaar, F. H., Foks, A. C., Wezel, A., Smeets, H., Yagita, H., Bot, I., Jiskoot, W., Kuiper, J., & Slütter, B. (2019). CD8+ T-cells contribute to lesion stabilization in advanced atherosclerosis by limiting macrophage content and CD4+ T-cell responses. Cardiovascular Research, 115(4), 729–738. https://doi.org/10.1093/cvr/cvy261

Winkels, H., & Wolf, D. (2021). Heterogeneity of T cells in atherosclerosis determined by single-cell RNA-sequencing and cytometry by time of flight. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(2), 549–563. https://doi.org/10.1161/ATVBAHA.120.312137

Wohlford, G. F., Van Tassell, B. W., Billingsley, H. E., Kadariya, D., Canada, J. M., Carbone, S., Mihalick, V. L., Bonaventura, A., Vecchié, A., Chiabrando, J. G., Bressi, E., Thomas, G., Ho, A. C., Marawan, A. A., Dell, M., Trankle, C. R., Turlington, J., Markley, R., & Abbate, A. (2020). Phase 1B, randomized, double-blinded, dose escalation, single-center, repeat dose safety and pharmacodynamics study of the oral NLRP3 inhibitor dapansutrile in subjects with NYHA II-III systolic heart failure. Journal of Cardiovascular Pharmacology, 77(1), 49–60. https://doi.org/10.1097/FJC.0000000000000931

Xia, M., Wu, Q., Chen, P., & Qian, C. (2021). Regulatory T cell-related gene biomarkers in the deterioration of atherosclerosis. Frontiers in Cardiovascular Medicine, 8, 661709. https://doi.org/10.3389/fcvm.2021.661709

Yin, C., Vrieze, A. M., Rosoga, M., Akingbasote, J., Pawlak, E. N., Jacob, R. A., Hu, J., Sharma, N., Dikeakos, J. D., Barra, L., Nagpal, A. D., & Heit, B. (2020). Efferocytic defects in early atherosclerosis are driven by GATA2 overexpression in macrophages. Frontiers in Immunology, 11, 594136. https://doi.org/10.3389/fimmu.2020.594136

Yurdagul, A., Jr., Kong, N., Gerlach, B. D., Wang, X., Ampomah, P., Kuriakose, G., Tao, W., Shi, J., & Tabas, I. (2021). ODC (Ornithine Decarboxylase)-Dependent Putrescine Synthesis Maintains MerTK (MER Tyrosine-Protein Kinase) Expression to Drive Resolution. Arteriosclerosis, Thrombosis, and Vascular Biology, 41(3), e144–e159. https://doi.org/10.1161/ATVBAHA.120.315622

Zhao, Y., Zhang, J., Zhang, W., & Xu, Y. (2021). A myriad of roles of dendritic cells in atherosclerosis. Clinical and Experimental Immunology, 206(1), 12–27. https://doi.org/10.1111/cei.13634

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
10
View
0
Share