Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Novel Cardiac Biomarkers H-FABP and GPBB for Early Detection and Prognosis of Acute Myocardial Infarction

Hayder T Qaddoori 1*, Fatima Mallalah Mohammed 2, Ali Najm Abdullah 1

+ Author Affiliations

Journal of Angiotherapy 8(3) 1-12 https://doi.org/10.25163/angiotherapy.839589

Submitted: 11 January 2024  Revised: 06 March 2024  Published: 08 March 2024 

Abstract

Background: Cardiovascular diseases are the leading cause of morbidity and mortality globally, with acute myocardial infarction (AMI) being a significant contributor. This study aimed to investigate the roles of cardiac biomarkers, including H-FABP, GPBB, and others, in detecting AMI. Method: Blood samples were collected from 80 individuals, including 50 with AMI and 30 healthy controls, admitted to the Coronary Care Unit (CCU) of an Educational Hospital in Diyala province between May and July 2022. Cardiac markers (hs-troponin-I, myoglobin, CK-MB, GPBB, and H-FABP) were measured using the Sandwich-ELISA technique. Results: There were no significant differences (p>0.05) in age or gender distribution between the study groups. Levels of cardiac markers were significantly higher in AMI patients compared to healthy controls (p<0.05). H-FABP demonstrated the highest sensitivity (100%), followed by GPBB (97%), hs-troponin-I (87%), CK-MB (85%), and myoglobin (78%), with significant differences (p<0.05) in detecting AMI. H-FABP and GPBB also exhibited the highest specificity (98% and 96%, respectively), while myoglobin and CK-MB had lower specificity (82% and 84%, respectively). Furthermore, positive correlations were observed between H-FABP, GPBB, and other markers (hs-troponin-I, myoglobin, CK-MB). Conclusion: H-FABP and GPBB show promise as predictive indicators for early diagnosis (within 1-4 hours of chest pain) of AMI, offering potential utility in clinical practice.

Keywords: Acute myocardial infarction (AMI), H-FABP, GPBB, Cardiac Biomarkers.

References

Ambroziak, M., Niewczas-Wieprzowska, K., Maicka, A., & Budaj, A. (2020). Younger age of patients with myocardial infarction is associated with a higher number of relatives with a history of premature atherosclerosis. BMC Cardiovascular Disorders, 20, 1-9.

 Anderson, P. A., Malouf, N. N., Oakeley, A. E., Pagani, E. D., & Allen, P. D. (1991). Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circulation research, 69(5), 1226-1233.

Asl, S. K., & Rahimzadegan, M. (2022). The recent progress in the early diagnosis of acute myocardial infarction based on myoglobin biomarker: Nano-aptasensors approaches. Journal of Pharmaceutical and Biomedical Analysis, 211, 114624.

Aydin, S., Ugur, K., Aydin, S., Sahin, I., & Yardim, M. (2019). Biomarkers in acute myocardial infarction: current perspectives. Vascular health and risk management, 1-10.

Beller, J., Bauersachs, J., Schäfer, A., Schwettmann, L., Heier, M., Peters, A., ... & Geyer, S. (2020). Diverging trends in age at first myocardial infarction: evidence from two German population-based studies. Scientific reports, 10(1), 9610.

Berezin, A. E., & Berezin, A. A. (2020). Adverse cardiac remodelling after acute myocardial infarction: old and new biomarkers. Disease Markers, 2020.

Bodí, V., Sanchis, J., Llácer, À., Fácila, L., Núñez, J., Pellicer, M., ... & Chorro, F. J. (2003). Prognostic markers of non-ST elevation acute coronary syndromes. Revista espanola de cardiologia, 56(9), 857-864.

Bodor, G. S. (2016). Biochemical markers of myocardial damage. Ejifcc, 27(2), 95.

Canto, J. G., Rogers, W. J., Goldberg, R. J., Peterson, E. D., Wenger, N. K., Vaccarino, V., ... & NRMI Investigators. (2012). Association of age and sex with myocardial infarction symptom presentation and in-hospital mortality. Jama, 307(8), 813-822.

Chaulin, A. M., & Duplyakov, D. V. (2020). Biomarkers of acute myocardial infarction: diagnostic and prognostic value. Part 1. Journal of Clinical Practice, 11(3), 75-84.

Collet, J. P., Thiele, H., Barbato, E., Barthélémy, O., Bauersachs, J., Bhatt, D. L., ... & Siontis, G. C. (2021). ESC Scientific Document Group. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J, 42(14), 1289-1367.

de Miguel-Yanes, J. M., Jiménez-García, R., Hernandez-Barrera, V., de Miguel-Díez, J., Muñoz-Rivas, N., Méndez-Bailón, M., ... & Lopez-de-Andres, A. (2021). Sex differences in the incidence and outcomes of acute myocardial infarction in Spain, 2016–2018: a matched-pair analysis. Journal of Clinical Medicine, 10(8), 1795.

DeFilippis, E. M., Collins, B. L., Singh, A., Biery, D. W., Fatima, A., Qamar, A., ... & Blankstein, R. (2020). Women who experience a myocardial infarction at a young age have worse outcomes compared with men: the Mass General Brigham YOUNG-MI registry. European heart journal, 41(42), 4127-4137.

Didangelos, A., Simper, D., Monaco, C., & Mayr, M. (2009). Proteomics of acute coronary syndromes. Current atherosclerosis reports, 11(3), 188-195.

El-Nagdy, S. A., Elfakharany, Y., & Etewa, R. (2020). Role of glycogen phosphorylase in prediction of cardiotoxicity associated with acute carbon monoxide poisoning. Zagazig Journal of Forensic Medicine, 18(2), 59-74.

Entman, M. L., Bornet, E. P., Van Winkle, W. B., Goldstein, M. A., & Schwartz, A. (1977). Association of glycogenolysis with cardiac sarcoplasmic recticulum: II. effect of glycogen depletion, deoxycholate solubilization and cardiac ischemia: evidence for a phosphorylase kinase membrane complex. Journal of Molecular and Cellular Cardiology, 9(7), 515-528.

Eyyupkoca, F., Felekoglu, M. A., Karakus, G., Kocak, A., Yildirim, O., Altintas, M. S., ... & Ozkan, C. (2021). The evaluation of cTnT/CK-MB ratio is as a predictor of change in cardiac function after myocardial infarction. Heart, Vessels and Transplantation, 5(3), 113-122.

Gavali, L. V., Mohammed, A. A., Al-Ogaili, M. J., Gaikwad, S. H., Kulkarni, M., Das, R., & Ubale, P. A. (2024). Novel terephthalaldehyde bis (thiosemicarbazone) Schiff base ligand and its transition metal complexes as antibacterial Agents: Synthesis, characterization and biological investigations. Results in Chemistry, 7, 101316.

Ghimire, A., Giri, S., Khanal, N., Rayamajhi, S., Thapa, A., Bist, A., & Devkota, S. (2022). Diagnostic accuracy of glycogen phosphorylase BB for myocardial infarction: A systematic review and meta-analysis. Journal of Clinical Laboratory Analysis, 36(5), e24368.

Gho, J. M., Postema, P. G., Conijn, M., Bruinsma, N., de Jong, J. S., Bezzina, C. R., ... & Asselbergs, F. W. (2017). Heart failure following STEMI: a contemporary cohort study of incidence and prognostic factors. Open Heart, 4(2), e000551.

Goel, H., Melot, J., Krinock, M. D., Kumar, A., Nadar, S. K., & Lip, G. Y. (2020). Heart-type fatty acid-binding protein: an overlooked cardiac biomarker. Annals of Medicine, 52(8), 444-461.

Huynh, J., Barmano, N., Karlsson, J. E., & Stomby, A. (2021). Sex and age differences in the incidence of acute myocardial infarction during the COVID-19 pandemic in a Swedish health-care region without lockdown: a retrospective cohort study. The Lancet Healthy Longevity, 2(5), e283-e289.

Ibanez, B., James, S., Agewall, S., Antunes, M. J., Bucciarelli-Ducci, C., Bueno, H., ... & Widimský, P. (2018). 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). European heart journal, 39(2), 119-177.

Karaismailoglu, E., Dikmen, Z. G., Akbiyik, F., & Karaagaoglu, A. E. (2018). A statistical approach to evaluate the performance of cardiac biomarkers in predicting death due to acute myocardial infarction: time-dependent ROC curve. Turkish journal of medical sciences, 48(2), 237-245.

Karpay, S., Sarada, C. V., Kondu, D., Pavuluri, P., Gadepalli, R., & Naresh, B. (2022). Evaluation of biochemical parameters in acute myocardial infarction and angina patients. Journal of Ideas in Health, 5(2), 664-668.

Keller, T., Zeller, T., Ojeda, F., Tzikas, S., Lillpopp, L., Sinning, C., ... & Blankenberg, S. (2011). Serial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction. Jama, 306(24), 2684-2693.

Klocke, F. J., Copley, D. P., Krawczyk, J. A., & Reichlin, M. (1982). Rapid renal clearance of immunoreactive canine plasma myoglobin. Circulation, 65(7), 1522-1528.

Kottwitz, J., Bruno, K. A., Berg, J., Salomon, G. R., Fairweather, D., Elhassan, M., ... & Heidecker, B. (2020). Myoglobin for detection of high-risk patients with acute myocarditis. Journal of cardiovascular translational research, 13, 853-863.

Larsen, A. I., Grejs, A. M., Vistisen, S. T., Strand, K., Skadberg, Ø., Jeppesen, A. N., ... & Søreide, E. (2022). Kinetics of 2 different high-sensitive troponins during targeted temperature management in out-of-hospital cardiac arrest patients with acute myocardial infarction: a post hoc sub-study of a randomised clinical trial. BMC Cardiovascular Disorders, 22(1), 342.

Lillpopp, L., Tzikas, S., Ojeda, F., Zeller, T., Baldus, S., Bickel, C., ... & Keller, T. (2012). Prognostic information of glycogen phosphorylase isoenzyme BB in patients with suspected acute coronary syndrome. The American journal of cardiology, 110(9), 1225-1230.

Lorente-Ros, M., Patel, A., Lorente, J. A., & López-de-Sá, E. (2022). Sex related differences in the treatment of ST-segment elevation acute myocardial infarction in patients aged< 55 years. The American Journal of Cardiology, 170, 25-30.

McCann, C. J., Glover, B. M., Menown, I. B., Moore, M. J., McEneny, J., Owens, C. G., ... & Adgey, J. A. (2008). Novel biomarkers in early diagnosis of acute myocardial infarction compared with cardiac troponin T. European heart journal, 29(23), 2843-2850.

Mohammed, Z. J., Sharba, M. M., & Mohammed, A. A. (2022). The effect of cigarette smoking on haematological parameters in healthy college students in the capital, baghdad. European Journal of Molecular & Clinical Medicine.

Moon, M. G., Yoon, C. H., Lee, K., Kang, S. H., Youn, T. J., & Chae, I. H. (2021). Evaluation of heart-type fatty acid-binding protein in early diagnosis of acute myocardial infarction. Journal of Korean Medical Science, 36(8).

Peetz, D., Post, F., Schinzel, H., Schweigert, R., Schollmayer, C., Steinbach, K., ... & Lackner, K. J. (2005). Glycogen phosphorylase BB in acute coronary syndromes. Clinical Chemistry and Laboratory Medicine (CCLM), 43(12), 1351-1358.

Rabitzsch, G., Mair, J., Lechleitner, P., Noll, F., Hofmann, U., Krause, E. G., ... & Puschendorf, B. (1995). Immunoenzymometric assay of human glycogen phosphorylase isoenzyme BB in diagnosis of ischemic myocardial injury. Clinical chemistry, 41(7), 966-978.

Redfors, B., AngerAas, O., RAamunddal, T., Petursson, P., Haraldsson, I., Dworeck, C., ... & Omerovic, E. (2015). Trends in gender differences in cardiac care and outcome after acute myocardial infarction in Western Sweden: a report from the Swedish web system for enhancement of evidence-based care in heart disease evaluated according to recommended therapies (SWEDEHEART). Journal of the American Heart Association, 4(7), e001995.

Sambola, A., Elola, F. J., Ferreiro, J. L., Murga, N., Rodríguez-Padial, L., Fernández, C., ... & Anguita, M. (2021). Impact of sex differences and network systems on the in-hospital mortality of patients with ST-segment elevation acute myocardial infarction. Revista Española de Cardiología (English Edition), 74(11), 927-934.

Shahbazi, H., Maleknia, M., & Noroozi, S. (2021). Investigating the Association of IL-1beta IL-8 & IL 11 with Commonly used Cardiovascular Biomarkers (CK-MB & Troponin) in Patients with Myocardial Infarction (MI).

Singh, N., Rathore, V., Mahat, R. K., & Rastogi, P. (2018). Glycogen phosphorylase BB: a more sensitive and specific marker than other cardiac markers for early diagnosis of acute myocardial infarction. Indian Journal of Clinical Biochemistry, 33(3), 356-360.

Smilowitz, N. R., Mahajan, A. M., Roe, M. T., Hellkamp, A. S., Chiswell, K., Gulati, M., & Reynolds, H. R. (2017). Mortality of myocardial infarction by sex, age, and obstructive coronary artery disease status in the ACTION Registry–GWTG (Acute Coronary Treatment and Intervention Outcomes Network Registry–Get With the Guidelines). Circulation: Cardiovascular Quality and Outcomes, 10(12), e003443.

Statescu, C., Anghel, L., Tudurachi, B. S., Leonte, A., Benchea, L. C., & Sascau, R. A. (2022). From classic to modern prognostic biomarkers in patients with acute myocardial infarction. International Journal of Molecular Sciences, 23(16), 9168.‏‏

Thygesen, K., Alpert, J. S., Jaffe, A. S., Chaitman, B. R., Bax, J. J., Morrow, D. A., & White, H. D. (2019). Fourth universal definition of myocardial infarction (2018). European heart journal, 40(3), 237-269.

Trinh, K., Julovi, S. M., & Rogers, N. M. (2022). The role of matrix proteins in cardiac pathology. International Journal of Molecular Sciences, 23(3), 1338.

Van Hise, C. B., Greenslade, J. H., Parsonage, W., Than, M., Young, J., & Cullen, L. (2018). External validation of heart-type fatty acid binding protein, high-sensitivity cardiac troponin, and electrocardiography as rule-out for acute myocardial infarction. Clinical biochemistry, 52, 161-163.

Wessler, J. D., Stant, J., Duru, S., Rabbani, L., & Kirtane, A. J. (2015). Updates to the ACCF/AHA and ESC STEMI and NSTEMI guidelines: putting guidelines into clinical practice. American Journal of Cardiology, 115(5), 23A-28A.

Wu, Y., Pan, N., An, Y., Xu, M., Tan, L., & Zhang, L. (2021). Diagnostic and prognostic biomarkers for myocardial infarction. Frontiers in cardiovascular medicine, 7, 617277.

Yang, Y., Liu, J., Zhao, F., Yuan, Z., Wang, C., Chen, K., & Xiao, W. (2022). Analysis of correlation between heart failure in the early stage of acute myocardial infarction and serum pregnancy associated plasma protein-A, prealbumin, C-reactive protein, and brain natriuretic peptide levels. Annals of Palliative Medicine, 11(1), 264-234.

Ye, X. D., He, Y., Wang, S., Wong, G. T., Irwin, M. G., & Xia, Z. (2018). Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta pharmacologica sinica, 39(7), 1155-1163.

Zhang, H. W., Jin, J. L., Cao, Y. X., Liu, H. H., Zhang, Y., Guo, Y. L., ... & Li, J. J. (2020). Heart-type fatty acid binding protein predicts cardiovascular events in patients with stable coronary artery disease: a prospective cohort study. Annals of Translational Medicine, 8(21).

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



13
Save
0
Citation
499
View
1
Share