Advancements in Quinazoline Derivatives as Targeted Anticancer Agents: A Review on its Synthesis, Mechanisms, and Therapeutic Potential
Mohd. Javed Naim 1*
Journal of Angiotherapy 8(10) 1-16 https://doi.org/10.25163/angiotherapy.8109970
Submitted: 25 August 2024 Revised: 15 October 2024 Published: 17 October 2024
This review highlights the therapeutic potential of quinazoline derivatives in cancer treatment, focusing on their ability to target critical tyrosine kinases and offering insights into their development as effective anticancer agents.
Abstract
This review focuses on the advancements in the design, synthesis, and evaluation of quinazoline derivatives as potential anticancer agents. Quinazoline, a versatile nitrogen-containing heterocyclic compound, has gained significant attention due to its biological activities and its ability to target key kinases involved in cancer progression, such as EGFR, VEGFR-2, JAK2, MPS1, and PLK1. Since 2000, numerous quinazoline-based derivatives have been synthesized, demonstrating varying degrees of anticancer potency against a range of cancer cell lines, including MCF-7, A549, HT-29, and HepG2. These derivatives, modified with functional groups such as aniline, aryloxy, pyrazole, thiazole, and hydroxamic acid, have shown promise as potential alternatives to conventional chemotherapeutic agents. Notably, compounds such as 51, 52, 53, and 62 have exhibited potent anticancer activity with IC50 values ranging from sub-micromolar to micromolar concentrations. The review highlights the significant therapeutic potential of quinazoline derivatives, particularly in targeting tyrosine kinases involved in cell proliferation, survival, and metastasis. Furthermore, the synthesis and structure-activity relationships (SAR) of these compounds are discussed, offering valuable insights for the development of new quinazoline analogues as targeted cancer therapies. Although promising, further studies are needed to refine their clinical efficacy and explore their full potential in diverse cancer models.
Keywords: Quinazoline derivatives, anticancer agents, tyrosine kinases, EGFR, VEGFR-2
References
Abdelsalam, E. A., Zaghary, W. A., Amin, K. M., Abou Taleb, N. A., Mekawey, A. A., Eldehna, W. M., ... & Hammad, S. F. (2019). Synthesis and in vitro anticancer evaluation of some fused indazoles, quinazolines and quinolines as potential EGFR inhibitors. Bioorganic Chemistry, 89, 102985.
Abu-Hashem, A. A., Hakami, O., & Amri, N. (2024). Synthesis, anticancer activity and molecular docking of new quinolines, quinazolines and 1, 2, 4-triazoles with pyrido [2, 3-d] pyrimidines. Heliyon, 10(5).
Ahn, K., Sisneros, A. M., Herman, S. B., Pan, S. M., Hupe, D., Lee, C., ... & Yanagisawa, M. (1998). Novel selective quinazoline inhibitors of endothelin converting enzyme-1. Biochemical and biophysical research communications, 243(1), 184-190.
Ahn, Y. G., Bae, I. H., Byun, E. Y., Ju, H. K., Jun, M. A., Jung, S. H., Jung, Y. H., Kim, H. S., Kim, M. S., Shim, M. Y., Song, J. Y., (2012) Quinoline or quinazoline derivatives with apoptosis inducing activity on cells, WO2012030160 A2.
Alafeefy, A. M., Alqasoumi, S. I., Ashour, A. E., Masand, V., Al-Jaber, N. A., Hadda, T. B., & Mohamed, M. A. (2012). Quinazoline–tyrphostin as a new class of antitumor agents, molecular properties prediction, synthesis and biological testing. European journal of medicinal chemistry, 53, 133-140.
Alagarsamy, V., & Pathak, U. S. (2007). Synthesis and antihypertensive activity of novel 3-benzyl-2-substituted-3H-[1, 2, 4] triazolo [5, 1-b] quinazolin-9-ones. Bioorganic & medicinal chemistry, 15(10), 3457-3462.
Alanazi, A. M., Alaa, A. M., Al-Suwaidan, I. A., Abdel-Hamide, S. G., Shawer, T. Z., & El-Azab, A. S. (2014). Design, synthesis and biological evaluation of some novel substituted quinazolines as antitumor agents. European Journal of Medicinal Chemistry, 79, 446-454.
Allam, H. A., Aly, E. E., Farouk, A. K., El Kerdawy, A. M., Rashwan, E., & Abbass, S. E. (2020). Design and Synthesis of some new 2, 4, 6-trisubstituted quinazoline EGFR inhibitors as targeted anticancer agents. Bioorganic Chemistry, 98, 103726.
Al-Omary, F. A., Hassan, G. S., El-Messery, S. M., & El-Subbagh, H. I. (2012). Substituted thiazoles V. Synthesis and antitumor activity of novel thiazolo [2, 3-b] quinazoline and pyrido [4, 3-d] thiazolo [3, 2-a] pyrimidine analogues. European journal of medicinal chemistry, 47, 65-72.
Arighi, E., Borrello, M. G., & Sariola, H. (2005). RET tyrosine kinase signaling in development and cancer. Cytokine & growth factor reviews, 16(4-5), 441-467.
Asif, M. (2014). Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. International journal of medicinal chemistry, 2014(1), 395637.
Berest, G. G., Voskoboynik, O. Y., Kovalenko, S. I., Antypenko, O. M., Nosulenko, I. S., Katsev, A. M., & Shandrovskaya, O. S. (2011). Synthesis and biological activity of novel N-cycloalkyl-(cycloalkylaryl)-2-[(3-R-2-oxo-2H-[1, 2, 4] triazino [2, 3-c] quinazoline-6-yl) thio] acetamides. European journal of medicinal chemistry, 46(12), 6066-6074.
Beria, I., Bossi, R. T., Brasca, M. G., Caruso, M., Ceccarelli, W., Fachin, G., ... & Valsasina, B. (2011). NMS-P937, a 4, 5-dihydro-1H-pyrazolo [4, 3-h] quinazoline derivative as potent and selective Polo-like kinase 1 inhibitor. Bioorganic & medicinal chemistry letters, 21(10), 2969-2974.
Berman, E. M., & Werbel, L. M. (1991). The renewed potential for folate antagonists in contemporary cancer chemotherapy. Journal of medicinal chemistry, 34(2), 479-485.
Bonacorso, H. G., Rosa, W. C., Oliveira, S. M., Brusco, I., Dalla Pozza, C. C., Nogara, P. A., ... & Zanatta, N. (2016). Synthesis and antinociceptive activity of new 2-substituted 4-(trifluoromethyl)-5, 6-dihydrobenzo [h] quinazolines. Bioorganic & Medicinal Chemistry Letters, 26(19), 4808-4814.
Borst, P., & Ouellette, M. (1995). New mechanisms of drug resistance in parasitic protozoa. Annual review of microbiology, 49, 427-461.
Bradbury, R. H., Halsall, C. T., Hennequin, L. F. A., Kettle, J. G., Plowright, A., (2005) Quinazoline derivatives, WO2005030757 A1.
Bradbury, R. H., Hennequin, L. F. A., Kettle, J. G., Mccabe, J., Turner, A., (2005) Piperidyl-quinazoline derivatives as tyrosine kinase inhibitors, WO2005012290 A1.
Brown, R., Fuchter, M. J., Chapman-Rothe, N., Srimongkolpithak, N., Caron, J., Synder, J., Ganesh, T., Liu, J., Sun, A., (2013) Quinazoline compounds and their use in therapy, WO2013140148 A1.
Bursavich, M. G., Dastrup, D., Shenderovich, M., Yager, K. M., Cimbora, D. M., Williams, B., & Kumar, D. V. (2013). Novel Mps1 kinase inhibitors: from purine to pyrrolopyrimidine and quinazoline leads. Bioorganic & medicinal chemistry letters, 23(24), 6829-6833.
Cai, J., Sun, M., Wu, X., Chen, J., Wang, P., Zong, X., & Ji, M. (2013). Design and synthesis of novel 4-benzothiazole amino quinazolines Dasatinib derivatives as potential anti-tumor agents. European Journal of Medicinal Chemistry, 63, 702-712.
Caldarelli, M., Angiolini, M., Disingrini, T., Donati, D., Guanci, M., Nuvoloni, S., ... & Colombo, R. (2011). Synthesis and SAR of new pyrazolo [4, 3-h] quinazoline-3-carboxamide derivatives as potent and selective MPS1 kinase inhibitors. Bioorganic & medicinal chemistry letters, 21(15), 4507-4511.
Catarzi, D., Colotta, V., Varano, F., Poli, D., Squarcialupi, L., Filacchioni, G., ... & Cristalli, G. (2013). Pyrazolo [1, 5-c] quinazoline derivatives and their simplified analogues as adenosine receptor antagonists: synthesis, structure–affinity relationships and molecular modeling studies. Bioorganic & medicinal chemistry, 21(1), 283-294.
Chandrika, P. M., Yakaiah, T., Rao, A. R. R., Narsaiah, B., Reddy, N. C., Sridhar, V., & Rao, J. V. (2008). Synthesis of novel 4, 6-disubstituted quinazoline derivatives, their anti-inflammatory and anti-cancer activity (cytotoxic) against U937 leukemia cell lines. European journal of medicinal chemistry, 43(4), 846-852.
Chen, P., Hutchison, A., Cai, G., (2001) Imidazo[1,5-c]quinazolines; A new class of GABA brain receptor ligands, US6297252 B1.
Chen, X., Du, Y., Sun, H., Wang, F., Kong, L., & Sun, M. (2014). Synthesis and biological evaluation of novel tricyclic oxazine and oxazepine fused quinazolines. Part 1: erlotinib analogs. Bioorganic & medicinal chemistry letters, 24(3), 884-887.
Chong, L.S., De, J. S. C. A., Gao, L., Herdewijn, P. A. M. M., Watkins, W. J., (2008) 4,6-dl- and 2,4,6-trisubstituted quinazoline derivatives and pharmaceutical compositions useful for treating viral infections, WO2008009077 A3.
Chowdhury, S., Chen, Y. T., Fang, X., Grant, W., Pocas, J., Cameron, M. D., ... & Feng, Y. (2013). Amino acid derived quinazolines as Rock/PKA inhibitors. Bioorganic & medicinal chemistry letters, 23(6), 1592-1599.
Clark, R. L., Clements, C. J., Barrett, M. P., Mackay, S. P., Rathnam, R. P., Owusu-Dapaah, G., ... & Huggan, J. K. (2012). Identification and development of the 1, 4-benzodiazepin-2-one and quinazoline-2, 4-dione scaffolds as submicromolar inhibitors of HAT. Bioorganic & medicinal chemistry, 20(20), 6019-6033.
Collis, A., Fox, D., (2004) Quinoline and quinazoline compounds useful in therapy, US20040034032 A1.
Conconi, M. T., Marzaro, G., Urbani, L., Zanusso, I., Di Liddo, R., Castagliuolo, I., ... & Chilin, A. (2013). Quinazoline-based multi-tyrosine kinase inhibitors: synthesis, modeling, antitumor and antiangiogenic properties. European journal of medicinal chemistry, 67, 373-383.
de Castro Barbosa, M. L., Lima, L. M., Tesch, R., Sant'Anna, C. M. R., Totzke, F., Kubbutat, M. H., ... & Barreiro, E. J. (2014). Novel 2-chloro-4-anilino-quinazoline derivatives as EGFR and VEGFR-2 dual inhibitors. European journal of medicinal chemistry, 71, 1-14.
Deng, X., Guo, L., Xu, L., Zhen, X., Yu, K., Zhao, W., & Fu, W. (2015). Discovery of novel potent and selective ligands for 5-HT2A receptor with quinazoline scaffold. Bioorganic & Medicinal Chemistry Letters, 25(18), 3970-3974.
Eis, K., Prien, O., Luecking, U., Guenther, J., Zopf, D., Brohm, D., Vöhringer, V., Woltering, E., Beck, H., Lobell, M., Li, V. M., Greschat, S., (2008) Novel sulphoximine-substituted quinazoline and quinazoline derivatives as kinase inhibitors, WO2008141843 A1.
Elkamhawy, A., Lee, J., Park, B. G., Park, I., Pae, A. N., & Roh, E. J. (2014). Novel quinazoline-urea analogues as modulators for Aβ-induced mitochondrial dysfunction: Design, synthesis, and molecular docking study. European journal of medicinal chemistry, 84, 466-475.
Elkamhawy, A., Viswanath, A. N. I., Pae, A. N., Kim, H. Y., Heo, J. C., Park, W. K., ... & Roh, E. J. (2015). Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM). European journal of medicinal chemistry, 103, 210-222.
El-Messery, S. M., Hassan, G. S., Nagi, M. N., Habib, E. S. E., Al-Rashood, S. T., & El-Subbagh, H. I. (2016). Synthesis, biological evaluation and molecular modeling study of some new methoxylated 2-benzylthio-quinazoline-4 (3H)-ones as nonclassical antifolates. Bioorganic & medicinal chemistry letters, 26(19), 4815-4823.
Engelman, J. A., Luo, J., & Cantley, L. C. (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Reviews Genetics, 7(8), 606-619.
Fairhurst, R. A., Gerspacher, M., Imbach-Weese, P., Mah, R., Caravatti, G., Furet, P., ... & Roehn-Carnemolla, E. (2015). Identification and optimisation of 4, 5-dihydrobenzo [1, 2-d: 3, 4-d] bisthiazole and 4, 5-dihydrothiazolo [4, 5-h] quinazoline series of selective phosphatidylinositol-3 kinase alpha inhibitors. Bioorganic & Medicinal Chemistry Letters, 25(17), 3575-3581.
Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., ... & Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer, 136(5), E359-E386.
Floyd, J. M., Nittoli, T., Wissner, A., Dushin, R. G., Nilakantan, R., Ingalls, C., Fraser, H. L., Johnson, B. D., (2005) Quinone substituted quinazoline and quinoline kinase inhibitors, WO2005115145 A2.
Gao, L., Herdewijn, P. A. M. M., De, J. S. C. A., Watkins, W. J., Chong, L. S., (2008) 4,6-dl- and 2,4,6-trisubstituted quinazoline derivatives and pharmaceutical compositions useful for treating viral infections, WO2008009077 A2.
Gao, L., Herdewijn, P. A. M. M., De, J. S. C. A., Watkins, W. J., Chong, L. S., (2008) 4,6-dl- and 2,4,6-trisubstituted quinazoline derivatives useful for treating viral infections, WO2008009078 A2.
Garofalo, A., Goossens, L., Six, P., Lemoine, A., Ravez, S., Farce, A., & Depreux, P. (2011). Impact of aryloxy-linked quinazolines: A novel series of selective VEGFR-2 receptor tyrosine kinase inhibitors. Bioorganic & medicinal chemistry letters, 21(7), 2106-2112.
Gaster, L. M., Heightman, T. D., Pilleux, J., (2001) Isoquinoline and quinazoline derivatives having a combined 5ht1a, 5ht1b and 5ht1d receptor activity, WO2001032626 A1.
Gazit, A., Levitzki, A., (2004) 4-anilido substituted quinazolines and use thereof as inhibitors of epidermal growth factor receptor kinases, WO2004013091 A3.
Gottesman, M. M. (2002). Mechanisms of cancer drug resistance. Annual review of medicine, 53(1), 615-627.
Gschwind, A., Fischer, O. M., & Ullrich, A. (2004). The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Reviews Cancer, 4(5), 361-370.
Guda, R., Narsimha, S., Babu, R., Muthadi, S., Lingabathula, H., Palabindela, R., ... & Kasula, M. (2016). Novel substituted hydrazono indolo [2, 1-b] quinazoline-6, 12-dione analogues as cytostatic agents: Synthesis, crystal structure, biological evaluation and molecular docking studies. Bioorganic & Medicinal Chemistry Letters, 26(22), 5517-5523.
Guo, J., (2009) Compositions comprising quinazoline derivatives, preparation methods and uses thereof, WO2009140863 A1.
He, J., Wang, X., Zhao, X., Liang, Y., He, H., & Fu, L. (2012). Synthesis and antitumor activity of novel quinazoline derivatives containing thiosemicarbazide moiety. European journal of medicinal chemistry, 54, 925-930.
He, Y., Kamenecka, T. M., Shin, Y., Song, X., Jiang, R., Noel, R., ... & LoGrasso, P. V. (2011). Synthesis and SAR of novel quinazolines as potent and brain-penetrant c-jun N-terminal kinase (JNK) inhibitors. Bioorganic & medicinal chemistry letters, 21(6), 1719-1723.
Hei, Y. Y., Xin, M., Zhang, H., Xie, X. X., Mao, S., & Zhang, S. Q. (2016). Synthesis and antitumor activity evaluation of 4, 6-disubstituted quinazoline derivatives as novel PI3K inhibitors. Bioorganic & Medicinal Chemistry Letters, 26(18), 4408-4413.
Hennequin, L. F. A., Ple, P., (2002) Quinazoline derivatives, WO2002092578 A1.
Hou, J., Wan, S., Wang, G., Zhang, T., Li, Z., Tian, Y., ... & Zhang, J. (2016). Design, synthesis, anti-tumor activity, and molecular modeling of quinazoline and pyrido [2, 3-d] pyrimidine derivatives targeting epidermal growth factor receptor. European Journal of Medicinal Chemistry, 118, 276-289.
Hu, S., Xie, G., Zhang, D. X., Davis, C., Long, W., Hu, Y., ... & Wang, Y. (2012). Synthesis and biological evaluation of crown ether fused quinazoline analogues as potent EGFR inhibitors. Bioorganic & medicinal chemistry letters, 22(19), 6301-6305.
Huang, W., Zhou, X., (2006) The preparation process of quinazoline derivatives and application for the manufacture for the treatment of tumor disease, WO2006119674 A1.
Juvale, K., Gallus, J., & Wiese, M. (2013). Investigation of quinazolines as inhibitors of breast cancer resistance protein (ABCG2). Bioorganic & medicinal chemistry, 21(24), 7858-7873.
Kabri, Y., Azas, N., Dumetre, A., Hutter, S., Laget, M., Verhaeghe, P., ... & Vanelle, P. (2010). Original quinazoline derivatives displaying antiplasmodial properties. European journal of medicinal chemistry, 45(2), 616-622.
Kashaw, S. K., Kashaw, V., Mishra, P., Jain, N. K., & Stables, J. P. (2009). CNS depressant and anticonvulsant activities of some new bioactive 1-(4-substituted-phenyl)-3-(4-oxo-2-phenyl/ethyl-4H-quinazolin-3-yl)-urea. European Journal of Medicinal Chemistry, 44, 4335-4343.
Khan, I., Ibrar, A., Abbas, N., & Saeed, A. (2014). Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. European Journal of Medicinal Chemistry, 76, 193-244.
Kraege, S., Stefan, K., Juvale, K., Ross, T., Willmes, T., & Wiese, M. (2016). The combination of quinazoline and chalcone moieties leads to novel potent heterodimeric modulators of breast cancer resistance protein (BCRP/ABCG2). European Journal of Medicinal Chemistry, 117, 212-229.
Krysko, A. A., Kornylov, A. Y., Polishchuk, P. G., Samoylenko, G. V., Krysko, O. L., Kabanova, T. A., ... & Andronati, S. A. (2016). Synthesis, biological evaluation and molecular docking studies of 2-piperazin-1-yl-quinazolines as platelet aggregation inhibitors and ligands of integrin αIIbβ3. Bioorganic & Medicinal Chemistry Letters, 26(7), 1839-1843.
Kumar, D., Kaur, G., Negi, A., Kumar, S., Singh, S., & Kumar, R. (2014). Synthesis and xanthine oxidase inhibitory activity of 5, 6-dihydropyrazolo/pyrazolo [1, 5-c] quinazoline derivatives. Bioorganic Chemistry, 57, 57-64.
LI, D. Y., Wang, J., YANG, Z., Zeng, Q., Zhang, X., (2014) Quinazoline inhibitors of activating mutant forms of epidermal growth factor receptor, WO2014135876 A1.
Li, H. Q., Li, D. D., Lu, X., Xu, Y. Y., & Zhu, H. L. (2012). Design and synthesis of 4, 6-substituted-(diaphenylamino) quinazolines as potent EGFR inhibitors with antitumor activity. Bioorganic & medicinal chemistry, 20(1), 317-323.
Li, S., Guo, C., Sun, X., Li, Y., Zhao, H., Zhan, D., ... & Tang, Y. (2012). Synthesis and biological evaluation of quinazoline and quinoline bearing 2, 2, 6, 6-tetramethylpiperidine-N-oxyl as potential epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and EPR bio-probe agents. European journal of medicinal chemistry, 49, 271-278.
Li, S., Wang, X., He, Y., Zhao, M., Chen, Y., Xu, J., ... & Qi, C. (2013). Design and synthesis of novel quinazoline nitrogen mustard derivatives as potential therapeutic agents for cancer. European Journal of Medicinal Chemistry, 67, 293-301.
Liang, C., (2006) Advanced quinazoline based protein kinase inhibitors, WO2005097137 A3.
Lim, C. J., Oh, K. S., Du Ha, J., Lee, J. H., Seo, H. W., Chae, C. H., ... & Lee, B. H. (2014). 4-Substituted quinazoline derivatives as novel EphA2 receptor tyrosine kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 24(17), 4080-4083.
Lin, S., Li, Y., Zheng, Y., Luo, L., Sun, Q., Ge, Z., ... & Li, R. (2017). Design, synthesis and biological evaluation of quinazoline–phosphoramidate mustard conjugates as anticancer drugs. European journal of medicinal chemistry, 127, 442-458.
Liu, P., Cheng, H., Roberts, T. M., & Zhao, J. J. (2009). Targeting the phosphoinositide 3-kinase pathway in cancer. Nature reviews Drug discovery, 8(8), 627-644.
Lu, K. P., & Zhou, X. Z. (2007). The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nature reviews Molecular cell biology, 8(11), 904-916.
Madhavi, S., Sreenivasulu, R., Yazala, J. P., & Raju, R. R. (2017). Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharmaceutical Journal, 25(2), 275-279.
Madhavi, S., Sreenivasulu, R., Yazala, J. P., & Raju, R. R. (2017). Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharmaceutical Journal, 25(2), 275-279.
Maggio, B., Daidone, G., Raffa, D., Plescia, S., Mantione, L., Cutuli, V. M. C., ... & Caruso, A. (2001). Synthesis and pharmacological study of ethyl 1-methyl-5-(substituted 3, 4-dihydro-4-oxoquinazolin-3-yl)-1H-pyrazole-4-acetates. European journal of medicinal chemistry, 36(9), 737-742.
Marvania, B., Lee, P. C., Chaniyara, R., Dong, H., Suman, S., Kakadiya, R., ... & Su, T. L. (2011). Design, synthesis and antitumor evaluation of phenyl N-mustard-quinazoline conjugates. Bioorganic & medicinal chemistry, 19(6), 1987-1998.
Masur, H. (1990). Problems in the management of opportunistic infections in patients infected with human immunodeficiency virus. Journal of Infectious Diseases, 161(5), 858-864.
Mendelsohn, J., & Baselga, J. (2000). The EGF receptor family as targets for cancer therapy. Oncogene, 19(56), 6550-6565.
Mishra, S., Verma, E., Patil, S., Rajani, D. P., & Gajbhiye, A. (2024). Exploration of quinazoline-tethered hydroxamic acid derivatives as HDAC inhibitors for anticancer activity: Design, synthesis, molecular docking, and biological evaluation. Results in Chemistry, 7, 101253.
Misra, A., Kishore, D., Verma, V. P., Dubey, S., Chander, S., Gupta, N., ... & Sharma, S. (2020). Synthesis, biological evaluation and molecular docking of pyrimidine and quinazoline derivatives of 1, 5-benzodiazepine as potential anticancer agents. Journal of King Saud University-Science, 32(2), 1486-1495.
Mohamed, M. M., & Sloane, B. F. (2006). Multifunctional enzymes in cancer. Nature Reviews Cancer, 6(10), 764-775.
Mohamed, T., & Rao, P. P. (2017). 2, 4-Disubstituted quinazolines as amyloid-β aggregation inhibitors with dual cholinesterase inhibition and antioxidant properties: Development and structure-activity relationship (SAR) studies. European journal of medicinal chemistry, 126, 823-843.
Monteleone, M. G., Belko, R. P., Schiet, F. T., Jones, P. D., Levorse, A. T., (2014) Novel quinazoline compounds and their use in perfume compositions, US20140194339 A1.
Morgan, G. T. (1904) ed. Abstract of Papers, J. Chem. Soc. London: Gurney & Jackson. Print.
Mowafy, S., Galanis, A., Doctor, Z. M., Paranal, R. M., Lasheen, D. S., Farag, N. A., ... & Abouzid, K. A. (2016). Toward discovery of mutant EGFR inhibitors; Design, synthesis and in vitro biological evaluation of potent 4-arylamino-6-ureido and thioureido-quinazoline derivatives. Bioorganic & medicinal chemistry, 24(16), 3501-3512.
Newton, R., Bowler, K. A., Burns, E. M., Chapman, P. J., Fairweather, E. E., Fritzl, S. J., ... & Ogilvie, D. J. (2016). The discovery of 2-substituted phenol quinazolines as potent RET kinase inhibitors with improved KDR selectivity. European Journal of Medicinal Chemistry, 112, 20-32.
Nishino, S., Hirotsu, K., Shima, H., Harada, T., Oda, H., (2003) Process for producing quinazolin-4-one and derivative thereof, WO2003051849 A1.
Noolvi, M. N., Patel, H. M., Bhardwaj, V., & Chauhan, A. (2011). Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: search for anticancer agent. European journal of medicinal chemistry, 46(6), 2327-2346.
Ping Lu, K., Hanes, S. D., & Hunter, T. (1996). A human peptidyl–prolyl isomerase essential for regulation of mitosis. Nature, 380(6574), 544-547.
Prasad, R. J., Rao, B., Satya, A. K., Rao, B. N., Chowdary, N. V., (2012) 6-7,dialkoxy quinazoline derivatives useful for treatment of cancer related disorders, US8143250 B2.
Prashanth, M. K., & Revanasiddappa, H. D. (2013). Synthesis of some new glutamine linked 2, 3-disubstituted quinazolinone derivatives as potent antimicrobial and antioxidant agents. Medicinal Chemistry Research, 22, 2665-2676.
Pu, Y., Cao, D., Xie, C., Pei, H., Li, D., Tang, M., & Chen, L. (2015). Anti-arthritis effect of a novel quinazoline derivative through inhibiting production of TNF-α mediated by TNF-α converting enzyme in murine collagen-induced arthritis model. Biochemical and Biophysical Research Communications, 462(4), 288-293.
Qin, X., Li, Z., Yang, L., Liu, P., Hu, L., Zeng, C., & Pan, Z. (2016). Discovery of new [1, 4] dioxino [2, 3-f] quinazoline-based inhibitors of EGFR including the T790M/L858R mutant. Bioorganic & Medicinal Chemistry, 24(13), 2871-2881.
Qin, X., Lv, Y., Liu, P., Li, Z., Hu, L., Zeng, C., & Yang, L. (2016). Novel morpholin-3-one fused quinazoline derivatives as EGFR tyrosine kinase inhibitors. Bioorganic & medicinal chemistry letters, 26(6), 1571-1575.
Quaranta, L., Lamberth, C., Lefranc, D. G. C. F., Umarye, J., Renold, P., Edmunds, A., Pouliot, M., (2010) Substituted quinazolines as fungicides, WO2010136475 A1.
Raghav, N., Jangra, S., Kumar, A., & Bhattacharyya, S. (2017). Quinazoline derivatives as cathepsins B, H and L inhibitors and cell proliferating agents. International journal of biological macromolecules, 94, 719-727.
Raghu, M. S., Swarup, H. A., Shamala, T., Prathibha, B. S., Kumar, K. Y., Alharethy, F., Prashanth MK & Jeon, B. H. (2023). Design, synthesis, anticancer activity, and docking studies of novel quinazoline-based thiazole derivatives as EGFR kinase inhibitors. Heliyon, 9(9).
Rambabu, D., Raja, G., Sreenivas, B. Y., Seerapu, G. P. K., Kumar, K. L., Deora, G. S., ... & Pal, M. (2013). Spiro heterocycles as potential inhibitors of SIRT1: Pd/C-mediated synthesis of novel N-indolylmethyl spiroindoline-3, 2′-quinazolines. Bioorganic & medicinal chemistry letters, 23(5), 1351-1357.
Ravez, S., Barczyk, A., Six, P., Cagnon, A., Garofalo, A., Goossens, L., & Depreux, P. (2014). Inhibition of tumor cell growth and angiogenesis by 7-aminoalkoxy-4-aryloxy-quinazoline ureas, a novel series of multi-tyrosine kinase inhibitors. European journal of medicinal chemistry, 79, 369-381.
Roecker, A. J., Mercer, S. P., Bergman, J. M., Gilbert, K. F., Kuduk, S. D., Harrell, C. M., ... & Coleman, P. J. (2015). Discovery of diazepane amide DORAs and 2-SORAs enabled by exploration of isosteric quinazoline replacements. Bioorganic & Medicinal Chemistry Letters, 25(21), 4992-4999.
Sachse, R., (2004) Use of 2-amino-2h-quinazoline derivatives for producing therapeutic agents, WO2004063172 A1.
Sagiv-Barfi, I., Weiss, E., & Levitzki, A. (2010). Design, synthesis, and evaluation of quinazoline T cell proliferation inhibitors. Bioorganic & medicinal chemistry, 18(17), 6404-6413.
Sakai, T., Senga, T., Furuta, T., Miwa, A., (2001) Quinoline and quinazoline derivatives and drugs containing the same, WO2001047890 A1.
Sánchez, A. I., Martínez-Barrasa, V., Burgos, C., Vaquero, J. J., Alvarez-Builla, J., Terricabras, E., & Segarra, V. (2013). Synthesis and evaluation of quinazoline derivatives as phosphodiesterase 7 inhibitors. Bioorganic & medicinal chemistry, 21(8), 2370-2378.
Sasmal, S., Balasubrahmanyam, D., Reddy, H. R. K., Balaji, G., Srinivas, G., Cheera, S., ... & Högberg, T. (2012). Design and optimization of quinazoline derivatives as melanin concentrating hormone receptor 1 (MCHR1) antagonists: part 2. Bioorganic & medicinal chemistry letters, 22(9), 3163-3167.
Sauve, A. A., Wolberger, C., Schramm, V. L., & Boeke, J. D. (2006). The biochemistry of sirtuins. Annu. Rev. Biochem., 75(1), 435-465.
Shao, J., Chen, E., Shu, K., Chen, W., Zhang, G., & Yu, Y. (2016). 6-Oxooxazolidine–quinazolines as noncovalent inhibitors with the potential to target mutant forms of EGFR. Bioorganic & Medicinal Chemistry, 24(16), 3359-3370.
Sharma, A., Luxami, V., & Paul, K. (2013). Synthesis, single crystal and antitumor activities of benzimidazole–quinazoline hybrids. Bioorganic & medicinal chemistry letters, 23(11), 3288-3294.
Shen, M., Stukenberg, P. T., Kirschner, M. W., & Lu, K. P. (1998). The essential mitotic peptidyl–prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes & development, 12(5), 706-720.
Shiroki, M. (1976). Japan Kokai 76, 43, 796. In Chem Abstr (Vol. 85, p. 94398).
Sørlie, T. (2004). Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. European journal of cancer, 40(18), 2667-2675.
Spanò, V., Montalbano, A., Carbone, A., Parrino, B., Diana, P., Cirrincione, G., ... & Barraja, P. (2014). Synthesis of a new class of pyrrolo [3, 4-h] quinazolines with antimitotic activity. European Journal of Medicinal Chemistry, 74, 340-357.
Špulák, M., Pourová, J., Vopršálová, M., Mikušek, J., Kuneš, J., Vacek, J., ... & Pour, M. (2014). Novel bronchodilatory quinazolines and quinoxalines: Synthesis and biological evaluation. European Journal of Medicinal Chemistry, 74, 65-72.
Sun, M., Zhao, J., Chen, X., Zong, Z., Han, J., Du, Y., ... & Wang, F. (2016). Synthesis and biological evaluation of novel tricyclic oxazine and oxazepine fused quinazolines. Part 2: Gefitinib analogs. Bioorganic & Medicinal Chemistry Letters, 26(19), 4842-4845.
Syed, T., Asiri, Y. I., Shaheen, S., & Gangarapu, K. (2021). Design, synthesis and anticancer evaluation of structurally modified substituted aryl-quinazoline derivatives as anticancer agents. Synthetic Communications, 51(18), 2782-2795.
Thorpe, L. M., Yuzugullu, H., & Zhao, J. J. (2015). PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nature Reviews Cancer, 15(1), 7-24.
Uckun, F. M., Liu, X., Narla, R. K., (2000) Quinazolines and therapeutic use thereof, WO2000056720 A1.
Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M., & Bilanges, B. (2010). The emerging mechanisms of isoform-specific PI3K signalling. Nature reviews Molecular cell biology, 11(5), 329-341.
Váradi, A., Horváth, P., Kurtán, T., Mándi, A., Tóth, G., Gergely, A., & Kökösi, J. (2012). Synthesis and configurational assignment of 1, 2-dihydroimidazo [5, 1-b] quinazoline-3, 9-diones: novel NMDA receptor antagonists. Tetrahedron, 68(50), 10365-10371.
Varano, F., Catarzi, D., Colotta, V., Lenzi, O., Filacchioni, G., Galli, A., & Costagli, C. (2008). Novel AMPA and kainate receptor antagonists containing the pyrazolo [1, 5-c] quinazoline ring system: Synthesis and structure–activity relationships. Bioorganic & medicinal chemistry, 16(5), 2617-2626.
Vodnala, S., Bhavani, A. K. D., Kamutam, R., Naidu, V. G. M., & Prabhakar, C. (2016). DABCO-catalyzed one-pot three component synthesis of dihydropyrano [3, 2-c] chromene substituted quinazolines and their evaluation towards anticancer activity. Bioorganic & Medicinal Chemistry Letters, 26(16), 3973-3977.
Wang, D. Z., (2013) A facile preparation of 4-substituted quinazolines and related heterocycles, WO2012151141 A3.
Weddige, A. (1887). I. Ueber Acetyl-o-Amidobenzamid und einige Derivate desselben. Journal für praktische Chemie, 36(1), 141-154.
Wissner, A., Tsou, H., Johnson, B. D., Hamann, P. R., Zhang, N., (2001) Substituted quinazoline derivatives, US6251912 B1.
Wu, L., Zhang, C., & Li, W. (2014). Synthesis and antiproliferative evaluation of 13-aryl-13H-benzo [g] benzothiazolo [2, 3-b] quinazoline-5, 14-diones. Bioorganic & Medicinal Chemistry Letters, 24(6), 1462-1465.
Xu, L., & Russu, W. A. (2013). Molecular docking and synthesis of novel quinazoline analogues as inhibitors of transcription factors NF-κB activation and their anti-cancer activities. Bioorganic & medicinal chemistry, 21(2), 540-546.
Yadav, R. R., Guru, S. K., Joshi, P., Mahajan, G., Mintoo, M. J., Kumar, V., ... & Bharate, S. B. (2016). 6-Aryl substituted 4-(4-cyanomethyl) phenylamino quinazolines as a new class of isoform-selective PI3K-alpha inhibitors. European Journal of Medicinal Chemistry, 122, 731-743.
Yaffe, M. B., Schutkowski, M., Shen, M., Zhou, X. Z., Stukenberg, P. T., Rahfeld, J. U., ... & Lu, K. P. (1997). Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science, 278(5345), 1957-1960.
Yang, S. H., Khadka, D. B., Cho, S. H., Ju, H. K., Lee, K. Y., Han, H. J., ... & Cho, W. J. (2011). Virtual screening and synthesis of quinazolines as novel JAK2 inhibitors. Bioorganic & medicinal chemistry, 19(2), 968-977.
Yao, H., Ji, M., Zhu, Z., Zhou, J., Cao, R., Chen, X., & Xu, B. (2015). Discovery of 1-substituted benzyl-quinazoline-2, 4 (1H, 3H)-dione derivatives as novel poly (ADP-ribose) polymerase-1 inhibitors. Bioorganic & Medicinal Chemistry, 23(4), 681-693.
Zeinyeh, W., Esvan, Y. J., Nauton, L., Loaëc, N., Meijer, L., Théry, V., ... & Moreau, P. (2016). Synthesis and preliminary in vitro kinase inhibition evaluation of new diversely substituted pyrido [3, 4-g] quinazoline derivatives. Bioorganic & Medicinal Chemistry Letters, 26(17), 4327-4329.
Zhang, C., & Li, W. (2013). Regioselective synthesis of 6-aryl-benzo [h][1, 2, 4]-triazolo [5, 1-b] quinazoline-7, 8-diones as potent antitumoral agents. Bioorganic & medicinal chemistry letters, 23(17), 5002-5005.
Zhang, D., (2014) Quinazoline derivatives as kinases inhibitors and methods of use thereof, US20140235658 A1.
Zhang, K., Lai, F., Lin, S., Ji, M., Zhang, J., Zhang, Y., ... & Xu, H. (2019). Design, synthesis, and biological evaluation of 4-methyl quinazoline derivatives as anticancer agents simultaneously targeting phosphoinositide 3-kinases and histone deacetylases. Journal of Medicinal Chemistry, 62(15), 6992-7014.
Zhang, L., Yang, Y., Zhou, H., Zheng, Q., Li, Y., Zheng, S., ... & Fan, C. (2015). Structure-activity study of quinazoline derivatives leading to the discovery of potent EGFR-T790M inhibitors. European Journal of Medicinal Chemistry, 102, 445-463.
Zhang, Y., Huang, Y. J., Xiang, H. M., Wang, P. Y., Hu, D. Y., Xue, W., ... & Yang, S. (2014). Synthesis and anticancer activities of 4-(4-substituted piperazin)-5, 6, 7-trialkoxy quinazoline derivatives. European Journal of Medicinal Chemistry, 78, 23-34.
Zhang, Y., Yang, C. R., Tang, X., Cao, S. L., Ren, T. T., Gao, M., ... & Xu, X. (2016). Synthesis and antitumor activity evaluation of quinazoline derivatives bearing piperazine-1-carbodithioate moiety at C4-position. Bioorganic & Medicinal Chemistry Letters, 26(19), 4666-4670.
Zhao, F., Lin, Z., Wang, F., Zhao, W., & Dong, X. (2013). Four-membered heterocycles-containing 4-anilino-quinazoline derivatives as epidermal growth factor receptor (EGFR) kinase inhibitors. Bioorganic & medicinal chemistry letters, 23(19), 5385-5388.
Zhu, L., Jin, J., Liu, C., Zhang, C., Sun, Y., Guo, Y., ... & Xu, B. (2011). Synthesis and biological evaluation of novel quinazoline-derived human Pin1 inhibitors. Bioorganic & medicinal chemistry, 19(9), 2797-2807.
Zhu, X., Van Horn, K. S., Barber, M. M., Yang, S., Wang, M. Z., Manetsch, R., & Werbovetz, K. A. (2015). SAR refinement of antileishmanial N2, N4-disubstituted quinazoline-2, 4-diamines. Bioorganic & medicinal chemistry, 23(16), 5182-5189.
View Dimensions
View Altmetric
Save
Citation
View
Share