Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Mechanisms and Future Perspectives of Curcumin in Diabetes Management

Kamran Javed Naquvi 1*

+ Author Affiliations

Journal of Angiotherapy 8(9) 1-15 https://doi.org/10.25163/angiotherapy.889880

Submitted: 11 June 2024  Revised: 21 September 2024  Published: 29 September 2024 

This review emphasizes curcumin's multifaceted roles in managing diabetes and its complications, highlighting the need for improved formulations to enhance efficacy.

Abstract


Background: Diabetes is a chronic metabolic disorder that leads to significant damage to vital organs due to prolonged high blood glucose levels. These complications include cardiovascular disease, peripheral neuropathy, retinopathy (eye damage), nephropathy (kidney damage), myopathy, and foot infections. Type 2 diabetes mellitus (T2DM) is the most common form of diabetes, primarily affecting adults when the body becomes resistant to insulin or when insulin production by the pancreas is insufficient. Turmeric (Curcuma longa), a spice widely used around the world, has been traditionally recognized for its numerous health benefits, including antidiabetic, antioxidant, antibacterial, hepatoprotective, and anticancer properties. Among its active compounds, curcumin, a polyphenolic curcuminoid, has garnered significant attention for its potential role in managing diabetes and its complications. Methods: Data for this review were obtained from databases including PubMed, Elsevier, ScienceDirect, and Google Scholar. Search terms utilized included "diabetes," "type 2 diabetes," "diabetic complications," "turmeric," "curcumin," "oxidative stress and curcumin," "curcumin and nephropathy," "curcumin and retinopathy," "curcumin and neuropathy," "curcumin and cardiovascular diseases," "curcumin and cardiomyopathy," “curcumin and pyroptosis,” "curcumin and diabetic foot ulcer," and "curcumin and erectile dysfunction." Results: This review highlights the promising role of curcumin in transforming diabetes treatment and management. The findings demonstrate that curcumin offers protective effects against diabetic complications by modulating key signaling pathways, such as NF-κB, AMPK, MAPK, and AP-1. Its anti-inflammatory properties, inhibition of hepatic gluconeogenesis, and reduction of oxidative stress through antioxidant activity present a strong case for its therapeutic potential in diabetes care. Conclusion: This review provides an in-depth explanation of curcumin's mechanisms of action, detailing its medicinal effects on diabetes-related complications and key outcomes from preclinical and clinical studies supporting its potential benefits. It also outlines future directions for research into curcumin's role in diabetes treatment.

Keywords: Curcumin, Curcuma longa, Diabetes, Diabetic Complications, Oxidative Stress

References


Abdel Aziz, M. T., Motawi, T., Rezq, A., Mostafa, T., Fouad, H. H., Ahmed, H. H., Rashed, L., Sabry, D., Senbel, A., Al-Malki, A., & El-Shafiey, R. (2012). Effects of a water-soluble curcumin protein conjugate vs. pure curcumin in a diabetic model of erectile dysfunction. The Journal of Sexual Medicine, 9(7), 1815–1833. https://doi.org/10.1111/j.1743-6109.2012.02741.x

Agharazi, M., Gazerani, S., & Huntington, M. K. (2022). Topical turmeric ointment in treating diabetic foot ulcers: a randomized, placebo-controlled study. The International Journal of Lower Extremity Wounds, 15347346221143222. Advanced online publication. https://doi.org/10.1177/15347346221143222

Akkus, G., & Sert, M. (2022). Diabetic foot ulcers: A devastating complication of diabetes mellitus continues non-stop despite new medical treatment modalities. World Journal of Diabetes, 13(12), 1106–1121. https://doi.org/10.4239/wjd.v13.i12.1106

Ali Hussain H. E. (2002). Hypoglycemic, hypolipidemic and antioxidant properties of combination of Curcumin from Curcuma longa, Linn, and partially purified product from Abroma augusta, Linn. in streptozotocin induced diabetes. Indian Journal of Clinical Biochemistry: IJCB, 17(2), 33–43. https://doi.org/10.1007/BF02867969

Alicic, R. Z., Rooney, M. T., & Tuttle, K. R. (2017). Diabetic kidney disease: challenges, progress, and possibilities. Clinical Journal of the American Society of Nephrology: CJASN, 12(12), 2032–2045. https://doi.org/10.2215/CJN.11491116

Alshehri A. M. (2010). Metabolic syndrome and cardiovascular risk. Journal of Family & Community Medicine, 17(2), 73–78. https://doi.org/10.4103/1319-1683.71987

ALTamimi, J. Z., AlFaris, N. A., Al-Farga, A. M., Alshammari, G. M., BinMowyna, M. N., & Yahya, M. A. (2021). Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a. The Journal of Nutritional Biochemistry, 87, 108515. https://doi.org/10.1016/j.jnutbio.2020.108515

Arli, M., & Celik, H. (2020). The biological importance of curcumin. Eastern Anatolian Journal of Science, 6(1), 21-34.

Ashwini, K., & Dash, R. (2023). Grading diabetic retinopathy using multiresolution based CNN. Biomedical Signal Processing and Control, 86, 105210.

Aumiller, W. D., & Dollahite, H. A. (2015). Pathogenesis and management of diabetic foot ulcers. JAAPA : Journal of American Academy of Physician Assistants, 28(5), 28–34. https://doi.org/10.1097/01.JAA.0000464276.44117.b1

Azhary, H., Farooq, M. U., Bhanushali, M., Majid, A., & Kassab, M. Y. (2010). Peripheral neuropathy: differential diagnosis and management. American Family Physician, 81(7), 887-892.

Baig, M. S., Banu, A., Zehravi, M., Rana, R., Burle, S. S., Khan, S. L., Islam, F., Siddiqui, F. A., Massoud, E. E. S., Rahman, M. H., & Cavalu, S. (2022). An overview of diabetic foot ulcers and associated problems with special emphasis on treatments with antimicrobials. Life (Basel, Switzerland), 12(7), 1054. https://doi.org/10.3390/life12071054

Barber A. J. (2015). Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss. Science China. Life sciences, 58(6), 541–549. https://doi.org/10.1007/s11427-015-4856-x

Baynes J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes, 40(4), 405–412. https://doi.org/10.2337/diab.40.4.405

Bertoncini-Silva, C., Vlad, A., Ricciarelli, R., Giacomo Fassini, P., Suen, V. M. M., & Zingg, J. M. (2024). Enhancing the bioavailability and bioactivity of curcumin for disease prevention and treatment. Antioxidants, 13(3), 331.

Bhatti, J. S., Sehrawat, A., Mishra, J., Sidhu, I. S., Navik, U., Khullar, N., ... & Reddy, P. H. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184, 114-134.

Boulton, A. J., Vinik, A. I., Arezzo, J. C., Bril, V., Feldman, E. L., Freeman, R., Malik, R. A., Maser, R. E., Sosenko, J. M., Ziegler, D., & American Diabetes Association (2005). Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care, 28(4), 956–962. https://doi.org/10.2337/diacare.28.4.956

Bragg, S., Marrison, S. T., & Haley, S. (2024). Diabetic Peripheral Neuropathy: Prevention and Treatment. American Family Physician, 109(3), 226–232.

Çakici, N., Fakkel, T. M., van Neck, J. W., Verhagen, A. P., & Coert, J. H. (2016). Systematic review of treatments for diabetic peripheral neuropathy. Diabetic Medicine, 33(11), 1466–1476. https://doi.org/10.1111/dme.13083.

Cao, M., Duan, Z., Wang, X., Gong, P., Zhang, L., & Ruan, B. (2024). Curcumin promotes diabetic foot ulcer wound healing by inhibiting miR-152-3p and activating the FBN1/TGF-β pathway. Molecular Biotechnology, 66(5), 1266–1278. https://doi.org/10.1007/s12033-023-01027-z

Caturano, A., D'Angelo, M., Mormone, A., Russo, V., Mollica, M. P., Salvatore, T., Galiero, R., Rinaldi, L., Vetrano, E., Marfella, R., Monda, M., Giordano, A., & Sasso, F. C. (2023). Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Current Issues in Molecular Biology, 45(8), 6651–6666. https://doi.org/10.3390/cimb45080420

Ceriello A. (2000). Oxidative stress and glycemic regulation. Metabolism: Clinical and Experimental, 49(2 Suppl 1), 27–29. https://doi.org/10.1016/s0026-0495(00)80082-7

Cernea, S., & Raz, I. (2021). Management of diabetic neuropathy. Metabolism, 123, 154867. https://doi.org/10.1016/j.metabol.2021.154867

Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11, 1158198. https://doi.org/10.3389/fchem.2023.1158198

Cheng, Y. W., Huang, Y. C., Chang, K. F., Huang, X. F., Sheu, G. T., & Tsai, N. M. (2024). Protective Effect of Curcumin on the Tight Junction Integrity and Cellular Senescence in Human Retinal Pigment Epithelium of Early Diabetic Retinopathy. Journal of Physiological Investigation, 67(3), 107–117. https://doi.org/10.4103/ejpi.EJPI-D-23-00035

Darenskaya, M. A., Kolesnikova, L. I., & Kolesnikov, S. I. (2021). Oxidative Stress: Pathogenetic Role in Diabetes Mellitus and Its Complications and Therapeutic Approaches to Correction. Bulletin of Experimental Biology and Medicine, 171(2), 179–189. https://doi.org/10.1007/s10517-021-05191-7

Davis, B. M., Pahlitzsch, M., Guo, L., Balendra, S., Shah, P., Ravindran, N., Malaguarnera, G., Sisa, C., Shamsher, E., Hamze, H., Noor, A., Sornsute, A., Somavarapu, S., & Cordeiro, M. F. (2018). Topical Curcumin Nanocarriers are Neuroprotective in Eye Disease. Scientific Reports, 8(1), 11066. https://doi.org/10.1038/s41598-018-29393-8

Deshpande, A. D., Harris-Hayes, M., & Schootman, M. (2008). Epidemiology of diabetes and diabetes-related complications. Physical Therapy, 88(11), 1254–1264. https://doi.org/10.2522/ptj.20080020

Dilworth, L., Facey, A., & Omoruyi, F. (2021). Diabetes mellitus and its metabolic complications: the role of adipose tissues. International Journal of Molecular Sciences, 22(14), 7644.

Dludla, P. V., Mabhida, S. E., Ziqubu, K., Nkambule, B. B., Mazibuko-Mbeje, S. E., Hanser, S., Basson, A. K., Pheiffer, C., & Kengne, A. P. (2023). Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World Journal of Diabetes, 14(3), 130–146. https://doi.org/10.4239/wjd.v14.i3.130

Dos Santos, J. M., de Oliveira, D. S., Moreli, M. L., & Benite-Ribeiro, S. A. (2018). The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2 diabetes. Molecular and Cellular Biochemistry, 449(1-2), 251–255. https://doi.org/10.1007/s11010-018-3361-5

Dos Santos, J. M., Tewari, S., & Mendes, R. H. (2019). The role of oxidative stress in the development of diabetes mellitus and its complications. Journal of Diabetes Research, 2019, 4189813. https://doi.org/10.1155/2019/4189813

Draganski, A., Tar, M. T., Villegas, G., Friedman, J. M., & Davies, K. P. (2018). Topically Applied Curcumin-Loaded Nanoparticles Treat Erectile Dysfunction in a Rat Model of Type-2 Diabetes. The Journal of Sexual Medicine, 15(5), 645–653. https://doi.org/10.1016/j.jsxm.2018.03.009

Edwards, J. L., Vincent, A. M., Cheng, H. T., & Feldman, E. L. (2008). Diabetic neuropathy: mechanisms to management. Pharmacology & Therapeutics, 120(1), 1–34. https://doi.org/10.1016/j.pharmthera.2008.05.005

Eguchi, N., Vaziri, N. D., Dafoe, D. C., & Ichii, H. (2021). The Role of Oxidative Stress in Pancreatic β Cell Dysfunction in Diabetes. International Journal of Molecular Sciences, 22(4), 1509. https://doi.org/10.3390/ijms22041509

Elsayed, H. R. H., Rabei, M. R., Elshaer, M. M. A., El Nashar, E. M., Alghamdi, M. A., Al-Qahtani, Z., & Nabawy, A. (2023). Suppression of neuronal apoptosis and glial activation with modulation of Nrf2/HO-1 and NF-kB signaling by curcumin in streptozotocin-induced diabetic spinal cord central neuropathy. Frontiers in Neuroanatomy, 17, 1094301. https://doi.org/10.3389/fnana.2023.1094301

Entezari, M., Hashemi, D., Taheriazam, A., Zabolian, A., Mohammadi, S., Fakhri, F., ... & Samarghandian, S. (2022). AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomedicine & Pharmacotherapy, 146, 112563.

Feldman, E. L., Callaghan, B. C., Pop-Busui, R., Zochodne, D. W., Wright, D. E., Bennett, D. L., Bril, V., Russell, J. W., & Viswanathan, V. (2019). Diabetic neuropathy. Nature Reviews. Disease Primers, 5(1), 42. https://doi.org/10.1038/s41572-019-0097-9

Gaschler, M. M., & Stockwell, B. R. (2017). Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications, 482(3), 419-425.

Ghasemi, H., Einollahi, B., Kheiripour, N., Hosseini-Zijoud, S. R., & Farhadian Nezhad, M. (2019). Protective effects of curcumin on diabetic nephropathy via attenuation of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) expression and alleviation of oxidative stress in rats with type 1 diabetes. Iranian Journal of Basic Medical Sciences, 22(4), 376–383. https://doi.org/10.22038/ijbms.2019.31922.7674

Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545

González, P., Lozano, P., Ros, G., & Solano, F. (2023). Hyperglycemia and oxidative stress: an integral, updated and critical overview of their metabolic interconnections. International Journal of Molecular Sciences, 24(11), 9352. https://doi.org/10.3390/ijms24119352

Gorain, B., Pandey, M., Leng, N. H., Yan, C. W., Nie, K. W., Kaur, S. J., ... & Choudhury, H. (2022). Advanced drug delivery systems containing herbal components for wound healing. International Journal of Pharmaceutics, 617, 121617.

Gu, Y., Niu, Q., Zhang, Q., & Zhao, Y. (2024). Ameliorative Effects of Curcumin on Type 2 Diabetes Mellitus. Molecules, 29(12), 2934.

Gupta, S. K., Kumar, B., Nag, T. C., Agrawal, S. S., Agrawal, R., Agrawal, P., Saxena, R., & Srivastava, S. (2011). Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. Journal of Ocular Pharmacology and Therapeutics, 27(2), 123–130. https://doi.org/10.1089/jop.2010.0123

Gurgul-Convey, E., Mehmeti, I., Plötz, T., Jörns, A., & Lenzen, S. (2016). Sensitivity profile of the human EndoC-βH1 beta cell line to proinflammatory cytokines. Diabetologia, 59(10), 2125–2133. https://doi.org/10.1007/s00125-016-4060-y

Hoogeveen, E. K. (2022). The epidemiology of diabetic kidney disease. Kidney and Dialysis, 2(3), 433-442.

International Diabetes Federation. IDF Diabetes Atlas 10th edition. International Diabetes Federation, 2021. https://diabetesatlas.org/atlas/tenth-edition/

Jabczyk, M., Nowak, J., Hudzik, B., & Zubelewicz-Szkodzinska, B. (2021). Curcumin in metabolic health and disease. Nutrients, 13(12), 4440.

Jia, T., Rao, J., Zou, L., Zhao, S., Yi, Z., Wu, B., Li, L., Yuan, H., Shi, L., Zhang, C., Gao, Y., Liu, S., Xu, H., Liu, H., Liang, S., & Li, G. (2018). Nanoparticle-encapsulated curcumin inhibits diabetic neuropathic pain involving the P2Y12 receptor in the dorsal root ganglia. Frontiers in Neuroscience, 11, 755. https://doi.org/10.3389/fnins.2017.00755

Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642.

Kao, Y. W., Hsu, S. K., Chen, J. Y. F., Lin, I. L., Chen, K. J., Lee, P. Y., ... & Cheng, K. C. (2020). Curcumin metabolite tetrahydrocurcumin in the treatment of eye diseases. International Journal of Molecular Sciences, 22(1), 212. https://doi.org/10.3390/ijms22010212

Khalid Ibrahim, I., Antoni, A., & Susanti, I. (2024). Implementation of Combination of Curcumin Gel and Honey for the Treatment of Diabetic Foot Ulcer: A Pre-Experimental Study. Journal of Wound Research and Technology, 1(1), 38–45. https://doi.org/10.70196/jwrt.v1i1.6

Khan, J., & Shaw, S. (2023). Risk of cataract and glaucoma among older persons with diabetes in India: a cross-sectional study based on LASI, Wave-1. Scientific Reports, 13(1), 11973.

Kim, T., Davis, J., Zhang, A. J., He, X., & Mathews, S. T. (2009). Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochemical and Biophysical Research Communications, 388(2), 377-382.

Kour, V., Swain, J., Singh, J., Singh, H., & Kour, H. (2024). A Review on Diabetic Retinopathy. Current Diabetes Reviews, 20(6), e201023222418. https://doi.org/10.2174/0115733998253672231011161400

Kumar, A., Gangwar, R., Zargar, A. A., Kumar, R., & Sharma, A. (2024). Prevalence of Diabetes in India: A Review of IDF Diabetes Atlas 10th Edition. Current Diabetes Reviews, 20(1), e130423215752. https://doi.org/10.2174/1573399819666230413094200

Landrum, O., Marcondes, L., Egharevba, T., & Gritsenko, K. (2023). Painful diabetic peripheral neuropathy of the feet: integrating prescription-strength capsaicin into office procedures. Pain Management, 13(10), 613–626. https://doi.org/10.2217/pmt-2023-0028

Leon, B. M., & Maddox, T. M. (2015). Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World Journal of Diabetes, 6(13), 1246–1258. https://doi.org/10.4239/wjd.v6.i13.1246

Li, J., Wang, P., Ying, J., Chen, Z., & Yu, S. (2016). Curcumin Attenuates Retinal Vascular Leakage by Inhibiting Calcium/Calmodulin-Dependent Protein Kinase II Activity in Streptozotocin-Induced Diabetes. Cellular Physiology and Biochemistry, 39(3), 1196–1208. https://doi.org/10.1159/000447826

Li, J., Wang, P., Zhu, Y., Chen, Z., Shi, T., Lei, W., & Yu, S. (2015). Curcumin Inhibits Neuronal Loss in the Retina and Elevates Ca²?/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Rats. Journal of Ocular Pharmacology and Therapeutics, 31(9), 555–562. https://doi.org/10.1089/jop.2015.0006

Li, L., Liu, S., Zhou, Y., Zhao, M., Wang, Y., Wang, C., Lou, P., Huang, R., Ma, L., Lu, Y., Fu, P., & Liu, J. (2021). Indispensable role of mitochondria in maintaining the therapeutic potential of curcumin in acute kidney injury. Journal of Cellular and Molecular Medicine, 25(20), 9863–9877. https://doi.org/10.1111/jcmm.16934

Lin, Z., Wang, S., Cao, Y., Lin, J., Sun, A., Huang, W., Zhou, J., & Hong, Q. (2024). Bioinformatics and validation reveal the potential target of curcumin in the treatment of diabetic peripheral neuropathy. Neuropharmacology, 260, 110131. Advance online publication. https://doi.org/10.1016/j.neuropharm.2024.110131

Lu, M., Yin, N., Liu, W., Cui, X., Chen, S., & Wang, E. (2017). Curcumin Ameliorates Diabetic Nephropathy by Suppressing NLRP3 Inflammasome Signaling. BioMed Research International, 2017, 1516985. https://doi.org/10.1155/2017/1516985

Luc, K., Schramm-Luc, A., Guzik, T. J., & Mikolajczyk, T. P. (2019). Oxidative stress and inflammatory markers in prediabetes and diabetes. Journal of Physiology and Pharmacology, 70(6), 10.26402/jpp.2019.6.01. https://doi.org/10.26402/jpp.2019.6.01

Lv, J., Cao, L., Zhang, R., Bai, F., & Wei, P. (2018). A curcumin derivative J147 ameliorates diabetic peripheral neuropathy in streptozotocin (STZ)-induced DPN rat models through negative regulation AMPK on TRPA1. Acta Cirurgica Brasileira, 33(6), 533–541. https://doi.org/10.1590/s0102-865020180060000008

Maiorino, M. I., Bellastella, G., & Esposito, K. (2014). Diabetes and sexual dysfunction: current perspectives. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 7, 95–105. https://doi.org/10.2147/DMSO.S36455

Masenga, S. K., Kabwe, L. S., Chakulya, M., & Kirabo, A. (2023). Mechanisms of oxidative stress in metabolic syndrome. International Journal of Molecular Sciences, 24(9), 7898.

McLennan, S. V., Heffernan, S., Wright, L., Rae, C., Fisher, E., Yue, D. K., & Turtle, J. R. (1991). Changes in hepatic glutathione metabolism in diabetes. Diabetes, 40(3), 344–348. https://doi.org/10.2337/diab.40.3.344

Miao, C., Chen, H., Li, Y., Guo, Y., Xu, F., Chen, Q., Zhang, Y., Hu, M., & Chen, G. (2021). Curcumin and its analog alleviate diabetes-induced damages by regulating inflammation and oxidative stress in brain of diabetic rats. Diabetology & Metabolic Syndrome, 13(1), 21. https://doi.org/10.1186/s13098-021-00638-3

Minaz, N., Razdan, R., Hammock, B. D., Mujwar, S., & Goswami, S. K. (2019). Impact of diabetes on male sexual function in streptozotocin-induced diabetic rats: Protective role of soluble epoxide hydrolase inhibitor. Biomedicine & Pharmacotherapy, 115, 108897. https://doi.org/10.1016/j.biopha.2019.108897

Mullarkey, C. J., Edelstein, D., & Brownlee, M. (1990). Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochemical and Biophysical Research Communications, 173(3), 932–939. https://doi.org/10.1016/s0006-291x(05)80875-7

Nunes, Y. C., Mendes, N. M., Pereira de Lima, E., Chehadi, A. C., Lamas, C. B., Haber, J. F., ... & Marin, M. J. S. (2024). Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence. Nutrients, 16(16), 2721.

Ogbonnaya, F. C., Amah, H. G., Ugwu, J. C., Akani, E.O., Karigdi, K.O., & Ahanonu, I. S. (2023). Ameliorating effects of curcumin on diabetes. Dutse Journal of Pure and Applied Sciences, 9(4a), 310-319, https://dx.doi.org/10.4314/dujopas.v9i4a.29

Oguntibeju O. O. (2019). Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. International Journal of Physiology, Pathophysiology and Pharmacology, 11(3), 45–63.

Peddada, K. V., Brown, A., Verma, V., & Nebbioso, M. (2019). Therapeutic potential of curcumin in major retinal pathologies. International Ophthalmology, 39(3), 725–734. https://doi.org/10.1007/s10792-018-0845-y

Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C., & Xu, R. (2021). Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Design, Development and Therapy, 15, 4503–4525. https://doi.org/10.2147/DDDT.S327378

Platania, C. B. M., Fidilio, A., Lazzara, F., Piazza, C., Geraci, F., Giurdanella, G., Leggio, G. M., Salomone, S., Drago, F., & Bucolo, C. (2018). Retinal protection and distribution of curcumin in vitro and in vivo. Frontiers in Pharmacology, 9, 670. https://doi.org/10.3389/fphar.2018.00670

Prabhakar S. S. (2017). Effects of curcumin in experimental diabetic nephropathy. Journal of Investigative Medicine, 65(1), 1–6. https://doi.org/10.1136/jim-2016-000272

Quispe, C., Herrera-Bravo, J., Javed, Z., Khan, K., Raza, S., Gulsunoglu-Konuskan, Z., Dastan, S. D., Sytar, O., Martorell, M., Sharifi-Rad, J., & Calina, D. (2022). Therapeutic applications of curcumin in diabetes: a review and perspective. BioMed Research International, 2022, 1375892. https://doi.org/10.1155/2022/1375892

Racz, L. Z., Racz, C. P., Pop, L. C., Tomoaia, G., Mocanu, A., Barbu, I., ... & Toma, V. A. (2022). Strategies for improving bioavailability, bioactivity, and physical-chemical behavior of curcumin. Molecules, 27(20), 6854.

Radomska-Lesniewska, D. M., Osiecka-Iwan, A., Hyc, A., Gózdz, A., Dabrowska, A. M., & Skopinski, P. (2019). Therapeutic potential of curcumin in eye diseases. Central-European Journal of Immunology, 44(2), 181–189. https://doi.org/10.5114/ceji.2019.87070

Rashid, K., Chowdhury, S., Ghosh, S., & Sil, P. C. (2017). Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochemical Pharmacology, 143, 140–155. https://doi.org/10.1016/j.bcp.2017.07.009

Rask-Madsen, C., & King, G. L. (2013). Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metabolism, 17(1), 20–33. https://doi.org/10.1016/j.cmet.2012.11.012

Ren, B. C., Zhang, Y. F., Liu, S. S., Cheng, X. J., Yang, X., Cui, X. G., Zhao, X. R., Zhao, H., Hao, M. F., Li, M. D., Tie, Y. Y., Qu, L., & Li, X. Y. (2020). Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. Journal of Cellular and Molecular Medicine, 24(21), 12355–12367. https://doi.org/10.1111/jcmm.15725

Roxo, D. F., Arcaro, C. A., Gutierres, V. O., Costa, M. C., Oliveira, J. O., Lima, T. F. O., Assis, R. P., Brunetti, I. L., & Baviera, A. M. (2019). Curcumin combined with metformin decreases glycemia and dyslipidemia, and increases paraoxonase activity in diabetic rats. Diabetology & Metabolic Syndrome, 11, 33. https://doi.org/10.1186/s13098-019-0431-0

Ruke, M., Iffat, Maurya, A., Bhise, A., Jose, J. A., et al. (2024). Effectiveness and Tolerability of Topical Curcumin for Management of Diabetic Foot Ulcer: A Pilot Clinical Study. International Journal of Diabetes and Endocrinology, 9(3), 56-60. https://doi.org/10.11648/j.ijde.20240903.11

Sagoo, M. K., & Gnudi, L. (2020). Diabetic nephropathy: an overview. Diabetic Nephropathy: Methods and Protocols, 3-7.

Salvatore, T., Pafundi, P. C., Galiero, R., Albanese, G., Di Martino, A., Caturano, A., Vetrano, E., Rinaldi, L., & Sasso, F. C. (2021). The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Frontiers in Medicine, 8, 695792. https://doi.org/10.3389/fmed.2021.695792

Sathyabhama, M., Priya Dharshini, L. C., Karthikeyan, A., Kalaiselvi, S., & Min, T. (2022). The credible role of curcumin in oxidative stress-mediated mitochondrial dysfunction in mammals. Biomolecules, 12(10), 1405. https://doi.org/10.3390/biom12101405

Sharma, S., Kulkarni, S. K., & Chopra, K. (2006). Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clinical and Experimental Pharmacology & Physiology, 33(10), 940–945. https://doi.org/10.1111/j.1440-1681.2006.04468.x

Soetikno, V., Sari, F. R., Veeraveedu, P. T., Thandavarayan, R. A., Harima, M., Sukumaran, V., Lakshmanan, A. P., Suzuki, K., Kawachi, H., & Watanabe, K. (2011a). Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutrition & Metabolism, 8(1), 35. https://doi.org/10.1186/1743-7075-8-35

Soetikno, V., Suzuki, K., Veeraveedu, P. T., Arumugam, S., Lakshmanan, A. P., Sone, H., & Watanabe, K. (2013). Molecular understanding of curcumin in diabetic nephropathy. Drug Discovery Today, 18(15-16), 756–763. https://doi.org/10.1016/j.drudis.2013.04.009

Soetikno, V., Watanabe, K., Sari, F. R., Harima, M., Thandavarayan, R. A., Veeraveedu, P. T., Arozal, W., Sukumaran, V., Lakshmanan, A. P., Arumugam, S., & Suzuki, K. (2011). Curcumin attenuates diabetic nephropathy by inhibiting PKC-α and PKC-β1 activity in streptozotocin-induced type I diabetic rats. Molecular Nutrition & Food Research, 55(11), 1655–1665. https://doi.org/10.1002/mnfr.201100080

Soto, C., Recoba, R., Barrón, H., Alvarez, C., & Favari, L. (2003). Silymarin increases antioxidant enzymes in alloxan-induced diabetes in rat pancreas. Comparative Biochemistry and Physiology. Toxicology & Pharmacology, 136(3), 205–212. https://doi.org/10.1016/s1532-0456(03)00214-x

Strain J. J. (1991). Disturbances of micronutrient and antioxidant status in diabetes. The Proceedings of the Nutrition Society, 50(3), 591–604. https://doi.org/10.1079/pns19910073

Strand, N., Anderson, M. A., Attanti, S., Gill, B., Wie, C., Dawodu, A., Pagan-Rosado, R., Harbell, M. W., & Maloney, J. A. (2024). Diabetic Neuropathy: Pathophysiology Review. Current Pain and Headache Reports, 28(6), 481–487. https://doi.org/10.1007/s11916-024-01243-5

Sultana, S., Munir, N., Mahmood, Z., Riaz, M., Akram, M., Rebezov, M., ... & Rengasamy, K. R. (2021). Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A Review. Biomedicine & Pharmacotherapy, 135, 111078.

Sun, W., Mei, X., Wang, J., Mai, Z., & Xu, D. (2024). Zn(II)-curcumin prevents cadmium-aggravated diabetic nephropathy by regulating gut microbiota and zinc homeostasis. Frontiers in Pharmacology, 15, 1411230. https://doi.org/10.3389/fphar.2024.1411230

Suneja, M. (2021). Diabetic nephropathy and diabetic kidney disease. Journal of Diabetes Mellitus, 11(5), 359-377.

Suryanarayana, P., Satyanarayana, A., Balakrishna, N., Kumar, P. U., & Reddy, G. B. (2007). Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 13(12), BR286–BR292.

Tabanelli, R., Brogi, S., & Calderone, V. (2021). Improving curcumin bioavailability: current strategies and future perspectives. Pharmaceutics, 13(10), 1715. https://doi.org/10.3390/pharmaceutics13101715

Thota, R. N., Acharya, S. H., & Garg, M. L. (2019). Curcumin and/or omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance and blood lipids in individuals with high risk of type 2 diabetes: a randomised controlled trial. Lipids in Health and Disease, 18(1), 31. https://doi.org/10.1186/s12944-019-0967-x

Tomic, D., Shaw, J. E., & Magliano, D. J. (2022). The burden and risks of emerging complications of diabetes mellitus. Nature Reviews. Endocrinology, 18(9), 525–539. https://doi.org/10.1038/s41574-022-00690-7

Trujillo, J., Chirino, Y. I., Molina-Jijón, E., Andérica-Romero, A. C., Tapia, E., & Pedraza-Chaverrí, J. (2013). Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biology, 1(1), 448–456. https://doi.org/10.1016/j.redox.2013.09.003

Tu, Q., Li, Y., Jin, J., Jiang, X., Ren, Y., & He, Q. (2019). Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells. Pharmaceutical Biology, 57(1), 778–786. https://doi.org/10.1080/13880209.2019.1688843

Tundis, R., Loizzo, M. R., Nabavi, S. M., Orhan, I. E., Skalicka-Wozniak, K., D’Onofrio, G., & Aiello, F. (2018). Natural compounds and their derivatives as multifunctional agents for the treatment of Alzheimer disease. In Discovery and Development of Neuroprotective Agents from Natural Products (pp. 63-102). Elsevier.

Ugo, C. H., Nnaemeka, M., Arene, E. C., Anyadike, I. K., Opara, S. O., Eze, P. N., ... & Ohiri, Z. C. (2022). Nutritional composition, bioavailability, medicinal functions and uses of turmeric: a review. Sch Bull, 8(8), 248-60.

Vinik, A. I., Maser, R. E., Mitchell, B. D., & Freeman, R. (2003). Diabetic autonomic neuropathy. Diabetes Care, 26(5), 1553–1579. https://doi.org/10.2337/diacare.26.5.1553

Wan, T. T., Li, X. F., Sun, Y. M., Li, Y. B., & Su, Y. (2015). Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. Biomedicine & Pharmacotherapy, 74, 145–147. https://doi.org/10.1016/j.biopha.2015.08.002

Wang, L. L., Sun, Y., Huang, K., & Zheng, L. (2013). Curcumin, a potential therapeutic candidate for retinal diseases. Molecular Nutrition & Food Research, 57(9), 1557–1568. https://doi.org/10.1002/mnfr.201200718

Wei, D. Z., Li, D., Zheng, D. M., An, Z. N., Xing, X. J., Jiang, D. W., Mei, X. F., & Liu, C. (2021). Curcumin conjugated gold nanoclusters as perspective therapeutics for diabetic cardiomyopathy. Frontiers in Chemistry, 9, 763892. https://doi.org/10.3389/fchem.2021.763892

Wei, Z., Pinfang, K., Jing, Z., Zhuoya, Y., Shaohuan, Q., & Chao, S. (2023). Curcumin improves diabetic cardiomyopathy by inhibiting pyroptosis through AKT/Nrf2/ARE pathway. Mediators of Inflammation, 2023, 3906043. https://doi.org/10.1155/2023/3906043

Wei, Z., Shaohuan, Q., Pinfang, K., & Chao, S. (2022). Curcumin attenuates ferroptosis-induced myocardial injury in diabetic cardiomyopathy through the Nrf2 pathway. Cardiovascular Therapeutics, 3159717. https://doi.org/10.1155/2022/3159717

Wu, H., Kong, L., Tan, Y., Epstein, P. N., Zeng, J., Gu, J., Liang, G., Kong, M., Chen, X., Miao, L., & Cai, L. (2016). C66 ameliorates diabetic nephropathy in mice by both upregulating NRF2 function via increase in miR-200a and inhibiting miR-21. Diabetologia, 59(7), 1558–1568. https://doi.org/10.1007/s00125-016-3958-8

Wu, Y., Tang, L., & Chen, B. (2014). Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxidative Medicine and Cellular Longevity, 2014, 752387. https://doi.org/10.1155/2014/752387

Xu, J., Cai, S., Zhao, J., Xu, K., Ji, H., Wu, C., ... & Wu, Y. (2021). Advances in the relationship between pyroptosis and diabetic neuropathy. Frontiers in Cell and Developmental Biology, 9, 753660.

Xu, Y., & Hao, W. (2024). Curcumin affects the progression of diabetic foot ulcers by regulating CRP protein. Journal of Biological Regulators and Homeostatic Agents, 38(1), 449-458. 10.23812/j.biol.regul.homeost.agents.20243801.37

Yang, F., Yu, J., Ke, F., Lan, M., Li, D., Tan, K., Ling, J., Wang, Y., Wu, K., & Li, D. (2018). Curcumin alleviates diabetic retinopathy in experimental diabetic rats. Ophthalmic Research, 60(1), 43–54. https://doi.org/10.1159/000486574

Yang, Y., Duan, W., Liang, Z., Yi, W., Yan, J., Wang, N., Li, Y., Chen, W., Yu, S., Jin, Z., & Yi, D. (2013). Curcumin attenuates endothelial cell oxidative stress injury through Notch signaling inhibition. Cellular signalling, 25(3), 615–629. https://doi.org/10.1016/j.cellsig.2012.11.025

Yu, W., Wu, J., Cai, F., Xiang, J., Zha, W., Fan, D., Guo, S., Ming, Z., & Liu, C. (2012). Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PloS one, 7(12), e52013. https://doi.org/10.1371/journal.pone.0052013

Zakir, M., Ahuja, N., Surksha, M. A., Sachdev, R., Kalariya, Y., Nasir, M., ... & Mohamad, T. (2023). Cardiovascular complications of diabetes: from microvascular to macrovascular pathways. Cureus, 15(9), e45835. doi: 10.7759/cureus.45835

Zamanian, M. Y., Alsaab, H. O., Golmohammadi, M., Yumashev, A., Jabba, A. M., Abid, M. K., Joshi, A., Alawadi, A. H., Jafer, N. S., Kianifar, F., & Obakiro, S. B. (2024). NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochemistry and Function, 42(4), e4030. https://doi.org/10.1002/cbf.4030

Zhang, P., Fang, J., Zhang, J., Ding, S., & Gan, D. (2020). Curcumin inhibited podocyte cell apoptosis and accelerated cell autophagy in diabetic nephropathy via regulating Beclin1/UVRAG/Bcl2. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 641–652. https://doi.org/10.2147/DMSO.S237451

Zhang, W. X., Lin, Z. Q., Sun, A. L., Shi, Y. Y., Hong, Q. X., & Zhao, G. F. (2022). Curcumin ameliorates the experimental diabetic peripheral neuropathy through promotion of NGF expression in rats. Chemistry & Biodiversity, 19(6), e202200029. https://doi.org/10.1002/cbdv.202200029

Zhao, M., Wang, Y., Li, L., Liu, S., Wang, C., Yuan, Y., Yang, G., Chen, Y., Cheng, J., Lu, Y., & Liu, J. (2021). Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics, 11(4), 1845-1863. https://doi.org/10.7150/thno.50905

Zhao, W. C., Zhang, B., Liao, M. J., Zhang, W. X., He, W. Y., Wang, H. B., & Yang, C. X. (2014). Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord. Neuroscience Letters, 560, 81–85. https://doi.org/10.1016/j.neulet.2013.12.019

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
246
View
0
Share