Ancient DNA studies: Common limitations and Genotyping
Anastasia V. Poznyak 1*, Tatyana Vladimirovna Kirichenko 3,6, Tatiana Ivanovna Kovyanova 1,3, Irina Alexandrovna Starodubtseva 4, Dmitry Felixovich Beloyartsev 5, Vasily N. Sukhorukov 3, and Alexander N. Orekhov 3
Journal of Angiotherapy 8(6) 1-8 https://doi.org/10.25163/angiotherapy.869750
Submitted: 30 April 2024 Revised: 18 June 2024 Published: 23 June 2024
Mapping human genes transformed genomic research, revealing human evolution, disease susceptibility, and ethical challenges in ancient DNA studies.
Abstract
Ancient DNA (aDNA) studies have revolutionized research on human origins and genetic diversity, providing insights into evolutionary history and disease susceptibility. This review article explores common limitations and genotyping techniques in aDNA research. The Human Genome Project (HGP) laid the foundation for genomic studies, enabling the sequencing of millions of modern and prehistoric human genomes. Advancements in technology and bioinformatics have facilitated the analysis of aDNA, revealing interbreeding events and ancient genetic variants shaping modern traits and health conditions. Laboratory work with aDNA involves complex processes to extract and sequence degraded samples, often obtained from skeletal remains. Techniques such as hybridization capture and high-throughput sequencing enhance data quality and analysis efficiency. Post-mortem DNA damage, including fragmentations and nucleotide conversions, poses challenges in authenticating aDNA sequences. Strategies like uracil-DNA glycosylase treatment help mitigate damage and improve data reliability. Ancient DNA genotyping methods, such as pseudohaploid and probabilistic genotyping, cater to varying data quality levels and analysis requirements. Genotype accuracy, affected by low coverage and post-mortem damage, poses challenges in differentiating heterozygous and homozygous loci. Ethical considerations in aDNA research highlight the importance of respecting individual and cultural rights, preserving cultural heritage, and addressing social implications of genetic findings. Transparency, accountability, and collaboration with descendant communities are essential for conducting ethically sound aDNA research.
Keywords: Human Genome Project (HGP), Ancient DNA (aDNA), Genomic Sequencing, Bioinformatics, Ethical Considerations
References
Alpaslan-Roodenberg, S., Anthony, D., Babiker, H., Bánffy, E., Booth, T., Capone, P., Deshpande-Mukherjee, A., Eisenmann, S., Fehren-Schmitz, L., Frachetti, M., Fujita, R., Frieman, C. J., Fu, Q., Gibbon, V., Haak, W., Hajdinjak, M., Hofmann, K. P., Holguin, B., Inomata, T., Kanzawa-Kiriyama, H., … Zahir, M. (2021). Ethics of DNA research on human remains: five globally applicable guidelines. Nature, 599(7883), 41–46. https://doi.org/10.1038/s41586-021-04008-x
Ausmees, K., Sanchez-Quinto, F., Jakobsson, M., & Nettelblad, C. (2022). An empirical evaluation of genotype imputation of ancient DNA. G3 (Bethesda, Md.), 12(6), jkac089. https://doi.org/10.1093/g3journal/jkac089
Ávila-Arcos, M. C., de la Fuente Castro, C., Nieves-Colón, M. A., & Raghavan, M. (2022). Recommendations for Sustainable Ancient DNA Research in the Global South: Voices From a New Generation of Paleogenomicists. Frontiers in genetics, 13, 880170. https://doi.org/10.3389/fgene.2022.880170
Barlow, A., Hartmann, S., Gonzalez, J., Hofreiter, M., & Paijmans, J. L. A. (2020). Consensify: A Method for Generating Pseudohaploid Genome Sequences from Palaeogenomic Datasets with Reduced Error Rates. Genes, 11(1), 50. https://doi.org/10.3390/genes11010050
Birney E. (2021). The International Human Genome Project. Human molecular genetics, 30(R2), R161–R163. https://doi.org/10.1093/hmg/ddab198
Bonfigli, A., Cesare, P., Volpe, A. R., Colafarina, S., Forgione, A., Aloisi, M., Zarivi, O., & Poma, A. M. G. (2023). Estimation of DNA Degradation in Archaeological Human Remains. Genes, 14(6), 1238. https://doi.org/10.3390/genes14061238
Carpenter, M., Divvela, P., Pingoud, V., Bujnicki, J., & Bhagwat, A. S. (2006). Sequence-dependent enhancement of hydrolytic deamination of cytosines in DNA by the restriction enzyme PspGI. Nucleic acids research, 34(13), 3762–3770. https://doi.org/10.1093/nar/gkl545
Cheng, C., Fei, Z., & Xiao, P. (2023). Methods to improve the accuracy of next-generation sequencing. Frontiers in bioengineering and biotechnology, 11, 982111. https://doi.org/10.3389/fbioe.2023.982111
Childebayeva, A., & Zavala, E. I. (2023). Review: Computational analysis of human skeletal remains in ancient DNA and forensic genetics. iScience, 26(11), 108066. https://doi.org/10.1016/j.isci.2023.108066
Dabney, J., Meyer, M., & Pääbo, S. (2013). Ancient DNA damage. Cold Spring Harbor perspectives in biology, 5(7), a012567. https://doi.org/10.1101/cshperspect.a012567
Dalal, V., Pasupuleti, N., Chaubey, G., Rai, N., & Shinde, V. (2023). Advancements and Challenges in Ancient DNA Research: Bridging the Global North-South Divide. Genes, 14(2), 479. https://doi.org/10.3390/genes14020479
Dalal, V., Pasupuleti, N., Chaubey, G., Rai, N., & Shinde, V. (2023). Advancements and Challenges in Ancient DNA Research: Bridging the Global North-South Divide. Genes, 14(2), 479. https://doi.org/10.3390/genes14020479
Danielewski, M., Zuraszek, J., Zielinska, A., Herzig, K. H., Slomski, R., Walkowiak, J., & Wielgus, K. (2023). Methodological Changes in the Field of Paleogenetics. Genes, 14(1), 234. https://doi.org/10.3390/genes14010234
Das, A. K., Goswami, S., Lee, K., & Park, S. J. (2019). A hybrid and scalable error correction algorithm for indel and substitution errors of long reads. BMC genomics, 20(Suppl 11), 948. https://doi.org/10.1186/s12864-019-6286-9
Ebler, J., Haukness, M., Pesout, T., Marschall, T., & Paten, B. (2019). Haplotype-aware diplotyping from noisy long reads. Genome biology, 20(1), 116. https://doi.org/10.1186/s13059-019-1709-0
Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E. A., & Cresko, W. A. (2011). SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods in molecular biology (Clifton, N.J.), 772, 157–178. https://doi.org/10.1007/978-1-61779-228-1_9
Feng, Y., Wang, T., Yang, Y., You, J., He, K., Zhang, H., Wang, Q., Yang, M., Huang, J., Ren, Z., & Jin, X. (2023). Genetic features and phylogenetic relationship analyses of Guizhou Han population residing in Southwest China via 38 X-InDels. PeerJ, 11, e14964. https://doi.org/10.7717/peerj.14964
Flores Bueso, Y., Walker, S. P., & Tangney, M. (2020). Characterization of FFPE-induced bacterial DNA damage and development of a repair method. Biology methods & protocols, 5(1), bpaa015. https://doi.org/10.1093/biomethods/bpaa015
Garrido Marques, A., Rubinacci, S., Malaspinas, A. S., Delaneau, O., & Sousa da Mota, B. (2024). Assessing the impact of post-mortem damage and contamination on imputation performance in ancient DNA. Scientific reports, 14(1), 6227. https://doi.org/10.1038/s41598-024-56584-3
Gasc, C., Peyretaillade, E., & Peyret, P. (2016). Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic acids research, 44(10), 4504–4518. https://doi.org/10.1093/nar/gkw309
Gasc, C., Peyretaillade, E., & Peyret, P. (2016). Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic acids research, 44(10), 4504–4518. https://doi.org/10.1093/nar/gkw309
Gill, P., Benschop, C., Buckleton, J., Bleka, Ø., & Taylor, D. (2021). A Review of Probabilistic Genotyping Systems: EuroForMix, DNAStatistX and STRmix™. Genes, 12(10), 1559. https://doi.org/10.3390/genes12101559
Günther, T., & Nettelblad, C. (2019). The presence and impact of reference bias on population genomic studies of prehistoric human populations. PLoS genetics, 15(7), e1008302. https://doi.org/10.1371/journal.pgen.1008302
Harney, É., Cheronet, O., Fernandes, D. M., Sirak, K., Mah, M., Bernardos, R., Adamski, N., Broomandkhoshbacht, N., Callan, K., Lawson, A. M., Oppenheimer, J., Stewardson, K., Zalzala, F., Anders, A., Candilio, F., Constantinescu, M., Coppa, A., Ciobanu, I., Dani, J., Gallina, Z., … Pinhasi, R. (2021). A minimally destructive protocol for DNA extraction from ancient teeth. Genome research, 31(3), 472–483. https://doi.org/10.1101/gr.267534.120
Head, S. R., Komori, H. K., LaMere, S. A., Whisenant, T., Van Nieuwerburgh, F., Salomon, D. R., & Ordoukhanian, P. (2014). Library construction for next-generation sequencing: overviews and challenges. BioTechniques, 56(2), 61–passim. https://doi.org/10.2144/000114133
Homer, N., & Nelson, S. F. (2010). Improved variant discovery through local re-alignment of short-read next-generation sequencing data using SRMA. Genome biology, 11(10), R99. https://doi.org/10.1186/gb-2010-11-10-r99
Hood, L., & Rowen, L. (2013). The Human Genome Project: big science transforms biology and medicine. Genome medicine, 5(9), 79. https://doi.org/10.1186/gm483
Krassner, M. M., Kauffman, J., Sowa, A., Cialowicz, K., Walsh, S., Farrell, K., Crary, J. F., & McKenzie, A. T. (2023). Postmortem changes in brain cell structure: a review. Free neuropathology, 4, 4-10. https://doi.org/10.17879/freeneuropathology-2023-4790
Krokan, H. E., & Bjørås, M. (2013). Base excision repair. Cold Spring Harbor perspectives in biology, 5(4), a012583. https://doi.org/10.1101/cshperspect.a012583
Krokan, H. E., Drabløs, F., & Slupphaug, G. (2002). Uracil in DNA--occurrence, consequences and repair. Oncogene, 21(58), 8935–8948. https://doi.org/10.1038/sj.onc.1205996
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., … International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921. https://doi.org/10.1038/35057062
Lovo, E., Woodward, L., Larkins, S., Preston, R., & Baba, U. N. (2021). Indigenous knowledge around the ethics of human research from the Oceania region: A scoping literature review. Philosophy, ethics, and humanities in medicine : PEHM, 16(1), 12. https://doi.org/10.1186/s13010-021-00108-8
Magi, A., Benelli, M., Gozzini, A., Girolami, F., Torricelli, F., & Brandi, M. L. (2010). Bioinformatics for next generation sequencing data. Genes, 1(2), 294–307. https://doi.org/10.3390/genes1020294
Mandape, S. N., Budowle, B., Mittelman, K., & Mittelman, D. (2024). Dense single nucleotide polymorphism testing revolutionizes scope and degree of certainty for source attribution in forensic investigations. Croatian medical journal, 65(3), 249–260.
Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S. A., Harney, E., Stewardson, K., Fernandes, D., Novak, M., Sirak, K., Gamba, C., Jones, E. R., Llamas, B., Dryomov, S., Pickrell, J., Arsuaga, J. L., de Castro, J. M., Carbonell, E., Gerritsen, F., … Reich, D. (2015). Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 528(7583), 499–503. https://doi.org/10.1038/nature16152
Metz, G. E., Serena, M. S., Piñeyro, P. E., Cheetham, S., & Giovambattista, G. (2023). Editorial: The role of genetics studies in the discovery of new viruses and in the analysis of pathogeny of viral infections. Frontiers in genetics, 14, 1240812. https://doi.org/10.3389/fgene.2023.1240812
Morozova, I., Flegontov, P., Mikheyev, A. S., Bruskin, S., Asgharian, H., Ponomarenko, P., Klyuchnikov, V., ArunKumar, G., Prokhortchouk, E., Gankin, Y., Rogaev, E., Nikolsky, Y., Baranova, A., Elhaik, E., & Tatarinova, T. V. (2016). Toward high-resolution population genomics using archaeological samples. DNA research : an international journal for rapid publication of reports on genes and genomes, 23(4), 295–310. https://doi.org/10.1093/dnares/dsw029
Oguchi, Y., Shintaku, H., & Uemura, S. (2020). Development of a sequencing system for spatial decoding of DNA barcode molecules at single-molecule resolution. Communications biology, 3(1), 788. https://doi.org/10.1038/s42003-020-01499-8
Oulas, A., Minadakis, G., Zachariou, M., Sokratous, K., Bourdakou, M. M., & Spyrou, G. M. (2019). Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches. Briefings in bioinformatics, 20(3), 806–824. https://doi.org/10.1093/bib/bbx151
Parks, M., Subramanian, S., Baroni, C., Salvatore, M. C., Zhang, G., Millar, C. D., & Lambert, D. M. (2015). Ancient population genomics and the study of evolution. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 370(1660), 20130381. https://doi.org/10.1098/rstb.2013.0381
Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T., & Reich, D. (2012). Ancient admixture in human history. Genetics, 192(3), 1065–1093. https://doi.org/10.1534/genetics.112.145037
Pavan, S., Delvento, C., Ricciardi, L., Lotti, C., Ciani, E., & D'Agostino, N. (2020). Recommendations for Choosing the Genotyping Method and Best Practices for Quality Control in Crop Genome-Wide Association Studies. Frontiers in genetics, 11, 447. https://doi.org/10.3389/fgene.2020.00447
Peter B. M. (2022). A geometric relationship of F2, F3and F4-statistics with principal component analysis. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 377(1852), 20200413. https://doi.org/10.1098/rstb.2020.0413
Peyrégne, S., & Peter, B. M. (2020). AuthentiCT: a model of ancient DNA damage to estimate the proportion of present-day DNA contamination. Genome biology, 21(1), 246. https://doi.org/10.1186/s13059-020-02123-y
Pimenoff, V. N., Houldcroft, C. J., Rifkin, R. F., & Underdown, S. (2018). The Role of aDNA in Understanding the Coevolutionary Patterns of Human Sexually Transmitted Infections. Genes, 9(7), 317. https://doi.org/10.3390/genes9070317
Psonis, N., Vassou, D., & Kafetzopoulos, D. (2021). Testing a series of modifications on genomic library preparation methods for ancient or degraded DNA. Analytical biochemistry, 623, 114193. https://doi.org/10.1016/j.ab.2021.114193
Renaud, G., Slon, V., Duggan, A. T., & Kelso, J. (2015). Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome biology, 16, 224. https://doi.org/10.1186/s13059-015-0776-0
Rohland, N., Harney, E., Mallick, S., Nordenfelt, S., & Reich, D. (2015). Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 370(1660), 20130624. https://doi.org/10.1098/rstb.2013.0624
Roth, W. D., Yaylaci, S., Jaffe, K., & Richardson, L. (2020). Do genetic ancestry tests increase racial essentialism? Findings from a randomized controlled trial. PloS one, 15(1), e0227399. https://doi.org/10.1371/journal.pone.0227399
Sakaki Y. (2019). A Japanese history of the Human Genome Project. Proceedings of the Japan Academy. Series B, Physical and biological sciences, 95(8), 441–458. https://doi.org/10.2183/pjab.95.031
Sharko, F. S., Zhur, K. V., Trifonov, V. A., & Prokhortchouk, E. B. (2023). Distortion of Population Statistics due to the Use of Different Methodological Approaches to the Construction of Genomic DNA Libraries. Acta naturae, 15(1), 87–96. https://doi.org/10.32607/actanaturae.11898
Sousa da Mota, B., Rubinacci, S., Cruz Dávalos, D. I., G Amorim, C. E., Sikora, M., Johannsen, N. N., Szmyt, M. H., Wlodarczak, P., Szczepanek, A., Przybyla, M. M., Schroeder, H., Allentoft, M. E., Willerslev, E., Malaspinas, A. S., & Delaneau, O. (2023). Imputation of ancient human genomes. Nature communications, 14(1), 3660. https://doi.org/10.1038/s41467-023-39202-0
Stan, E., Muresan, C. O., Dumache, R., Ciocan, V., Ungureanu, S., Mihailescu, A., Daescu, E., Duda-Seiman, C., Menghiu, G., Hutanu, D., & Enache, A. (2024). From Jane Doe to Sofia: DNA Extraction Protocol from Bones and Teeth without Liquid Nitrogen for Identifying Skeletal Remains. International journal of molecular sciences, 25(10), 5114. https://doi.org/10.3390/ijms25105114
Wagner, J. K., Colwell, C., Claw, K. G., Stone, A. C., Bolnick, D. A., Hawks, J., Brothers, K. B., & Garrison, N. A. (2020). Fostering Responsible Research on Ancient DNA. American journal of human genetics, 107(2), 183–195. https://doi.org/10.1016/j.ajhg.2020.06.017
Weiß, C. L., Gansauge, M. T., Aximu-Petri, A., Meyer, M., & Burbano, H. A. (2020). Mining ancient microbiomes using selective enrichment of damaged DNA molecules. BMC genomics, 21(1), 432. https://doi.org/10.1186/s12864-020-06820-7
Wibowo, M. C., Yang, Z., Borry, M., Hübner, A., Huang, K. D., Tierney, B. T., Zimmerman, S., Barajas-Olmos, F., Contreras-Cubas, C., García-Ortiz, H., Martínez-Hernández, A., Luber, J. M., Kirstahler, P., Blohm, T., Smiley, F. E., Arnold, R., Ballal, S. A., Pamp, S. J., Russ, J., Maixner, F., … Kostic, A. D. (2021). Reconstruction of ancient microbial genomes from the human gut. Nature, 594(7862), 234–239. https://doi.org/10.1038/s41586-021-03532-0
Yousefi, S., Abbassi-Daloii, T., Kraaijenbrink, T., Vermaat, M., Mei, H., van 't Hof, P., van Iterson, M., Zhernakova, D. V., Claringbould, A., Franke, L., 't Hart, L. M., Slieker, R. C., van der Heijden, A., de Knijff, P., BIOS consortium, & 't Hoen, P. A. C. (2018). A SNP panel for identification of DNA and RNA specimens. BMC genomics, 19(1), 90. https://doi.org/10.1186/s12864-018-4482-7
Zhu, Y., Wang, L., Yin, Y., & Yang, E. (2017). Systematic analysis of gene expression patterns associated with postmortem interval in human tissues. Scientific reports, 7(1), 5435. https://doi.org/10.1038/s41598-017-05882-0
View Dimensions
View Altmetric
Save
Citation
View
Share