Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Review on Angiogenesis Modulation by Natural Compounds as Therapeutic Potential and Mechanisms

Jegathambigai Rameshwar Naidu 1* , Sasidharan Sreenivasan 2, Sakina Ruhi 1, Hana W. Jun Chen 1, Sanjith Rameshwar Naidu 1, Danish Khan 3, Thin Thin Aung 1, Mya Mya Thwin 1, Husni Ahmed Al-Goshae 1, Subramanian Rammohan 1

+ Author Affiliations

Journal of Angiotherapy 8(2) 1-6 https://doi.org/10.25163/angiotherapy.829507

Submitted: 29 December 2023  Revised: 26 February 2024  Published: 28 February 2024 

Compounds derived from plants that have antiangiogenic effects could be used in the development of drugs that target this stage of angiogenesis.

Abstract


Angiogenesis is induced when there is any imbalance in the equilibrium due to either up regulation of pro-angiogenic factors or down regulation of anti-angiogenic mediators. Recent interest in identifying and modulating antiangiogenic pathways and antiangiogenic drug development has added advantage for therapeutic purposes. Many naturally occurring compounds have been indicated as inhibitors of tumor specific angiogenesis. This review was covers the topics including pathophysiology of angiogenesis, angiogenesis modulating compounds from plants, antiangiogenic potential of culinary herbs.  The anti-angiogenic potential of the plants may be due to the prese.nce of terpenoids and flavonoids. The molecular mechanisms responsible for the antiangiogenic activity may be associated with inhibition of several steps of angiogenesis including proliferation, migration and tube formation of vascular endothelial cells. Since there is a close relationship between tumor growth and angiogenesis mechanism, various anti-angiogenic compounds for use in cancer treatment have been studied. Angiogenic modulators would be an ideal choice for future chemotherapeutics.

Keywords: Angiogenesis, Angiogenic modulators, Therapeutic potential, Medicinal plants

References


Arif, Shan; Imran, Muhammad;, Iqbal, Muhammad Adnan. (2018).Modes of Anti-angiogenesis in Chemical Perspectives. Angiotherapy, 1(2), pages 078–086.

Avramis, I.A. et al. (2001). Taxotere and Vincristine inhibit the secretion of the angiogenesis inducing vascular endothelial growth factor(VEGF) by wild-type drug-resistant human leukemia T-cell lines. Anticancer Res. 21, 2281-2286.

Baumgartner, I., Pieczek, A., Manor, O., Blair, R., Kearney, M., Walsh, K., Isner, J.M., (1998). Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limB ischemia.Circulation 97 (12), 1114-1123.

Bergers and Benjamin, 2003; Berger, G., Benjamin, L.E. (2003). Tumorigenesis and the angiogenic switch. Nat.Rev Cancer, 3:401-410.

Brown et al., 1992: Brown, L.F., Yeo, K.T., Berse B. (1992). Expression of vascular permeability factor (VEGF) by epidermal keratinocytes during wound healing. J Exp Med, 176:1375-1379.

Dhamraa Waleed Ahmed. (2017). Tumor angiogenesis and its current treatments: a short review, 1(1), pages 044-047.

Distler et al., 2003)- Distler, J.H.W., Hirth, A., Kurowska-Stolarska, M., Gay, R.E., Gay, S., Distler, O. (2003) Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med ;47:149-61.

Elham Farsi. (2017). An insight into chronic kidney disease (CKD) through balanced angiogenesis , 1(1), pages 036-038.

Folkman J., Klagsbrun M. (1987). Angiogenic factor. Science 253:442-447.

Gargett CE., Rogers AW. (2001). Human endometrial angiogenesis. Reproduction, 121:181-186.

Haitoa et al., Haitao Luo., Gary, O. Rankin., Lingzhi Liu., Matthew, K. Daddysman., Bing-Hua Jiang and Yi Charlie Chen. (2009). Kaempferol Inhibits Angiogenesis and VEGF Expression ThroughBoth HIF Dependent and Independent Pathways in Human Ovarian, Cancer Cells. Nutr Cancer. 61(4): 554-563.

Horvath, K.A., Cohn, L.H., Cooley, D.A., Crew, J.R., Frazier, O.H., Griffith, B.P., Kadipasaoglu, K., Lansing, A., Mannting, F., March, R., Mirhoseini, M.R., Smith, C. (1997). Transmyocardial laser revascularization: results of a multicenter trial with transmyocardial laser revascularization used as sole therapy for end-stage coronary artery disease. The Journal of Thoracic and Cardiovascular Surgery 113, 645-653.

Johnson Johnson, H., Bailey, H., Mukhtar, H. (2010). Green tea polyphenols for prostate cancer chemoprevention: A translational perspective J.J. , Phytomedicine 17.

Lamy, S., Blanchette, M., Michaud-Levesque, J., Lafleur, R., Durocher, Y., Moghrabi, A., Barrette, S., Gingras, D., Beliveau, R. (2006). Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Carcinogenesis ;27:989-96.

Leyon, P.V., Kuttan, G. (2003). Studies on the role of some synthetic curcuminoid derivatives in the inhibition of tumor specific angiogenesis. J Exp Clin Cancer Res ;22:77-83.

Lok, Bronwyn; Abdul Majid, AMS ; Majid, ASA. (2017). Angiogenesis and Its Potential Role in the Growth and Proliferation of Pathogens. Angiotherapy, 1(1), pages 001–011.

Lossordo et al., 2005. Losordo, D.W., Vale, P.R., Symes, J.F., Dunnington, C.H., Esakof, D.D., Maysky, M., Ashare, A.B., Lathi, K., Isner, J.M., (1998). Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98, 2800-2804.

Mahfoudh AL-Musali Mohammed Abdulghani . (2017). Role of Angiogenesis on Uterine Fibroids Therapy: review. Angiotherapy, 1(1), pages 022-026.

Mann, G. E., Rowland, D. J., Li, F., Winter, Y. L., de Patricia, R., and Siow, C. M. (2007). Activation of endothelial nitric oxide synthase by dietary isoflavones: Role of NO in Nrf2-mediated antioxidant gene expression. Cardiovascular Research, 75, 261−274.

Manoj, G. Tyagi., A. Babu Vimalanathan and Gope Assudani.( 2010). Pathophysiology of Angiogenesis and novel angiomodulators from plant sources for therapeutic purpose. Journal of phytology. 2 (11): 13-24.

Mansoureh Nazari Vishkaei, Mohamed Khadeer Ahamed Basheer, Amin Malik Shah Abdul Majid. (2019). Ethosomal formulation composed of standardized Orthosiphon stamineus extract and sophorolipid inhibits angiogenesis of melanoma in vivo. Angiotherapy, 1(2), pages 087–096.

Md Shamsuddin Sultan Khan, Mohammad Adnan Iqbal, Muhammad Asif, Tabinda Azam, Majed Al-Mansoub, Rosenani S. M. A. Haque, Mohammed Khadeer Ahamed Basheer, Aman Shah Abdul Majid, Amin Malik Shah Abdul Majid1, (2019). Anti-GBM potential of Rosmarinic acid and its synthetic derivatives via targeting IL17A mediated angiogenesis pathway. Journal of Angiotherapy, 2(1), 011-011.

Md Shamsuddin Sultan Khan. (2017). Why Interleukin 17A is the most Potential Next Generation Drug Target in Angiogenesis-mediated diseases. Angiotherapy, 1(1), pages 030-032.

Md. Fakruddin, Md. Asaduzzaman Shishir, Kumkum Rahman Mouree, Shamsuddin Sultan Khan, Environmental and physiological angiogenesis in causing CVD with oxidative pattern, Journal of angiotherpay, 6(2).

Ming-Fang He., Lin Liua.,Wei Ge., Pang-Chui Shaw., Renwang Jiang. Li-WhaWu., Paul Pui-Hay But. (2009). Antiangiogenic activity of Tripterygium wilfordii and its terpenoids. Journal of Ethnopharmacology 121-61

Mukhlif Mohsin Slaihim, Luay Ali Dhahi, Abeer Hussein Ali, (2024), Innovative Piperidine-Catalyzation in Protecting Carbonyl Compounds with Implications for Angiogenesis and Inflammation, Journal of Angiotherapy, 8(1), 1-15, 9343.

Oak, M.H., El Bedoui, J., Schini-Kerth, V.B. (2005). Antiangiogenic properties of natural polyphenols from red wine and green tea. J Nutr Biochem;16:1-8.

Pegah Moradi. (2017). Microbubbles and electromagnetic waves for the treatment of angiogenesis-dependent human ailments, 1(1), 18-21.

Peter, Bu¨ chler, Howard, A. Reber, Markus W. Bu¨ chler, Helmut Friess, Robert S. Lavey, Oscar J. Hines, M.D. (2004). Antiangiogenic Activity of Genisteinin Pancreatic Carcinoma Cells Is Mediated by the Inhibition of Hypoxia-Inducible Factor-1 and the Downregulation of VEGF Gene Expression. Cancer January 1, / Volume 100 / Number 1.

Pugh CW, Ratcliffe PJ. (2003). Regulation of angiogenesis by hypoxia: role of HIF system. Nat Med;9:677-84.

Raghu K. (2003). Basement membrane's structure assembly and role in tumor angiogenesis. Nat. Med 3:442-433.

Rosengart, T.K., Lee, L.Y., Patel, S.R., Sanborn, T.A., Parikh, M., Bergman, G.W., Hachamovitch, R., Szulc, M., Kligfield, P.D., Okin, P.M., Hahn, R.T., Devereux, R.B., Post, M.R., Hackett, N.R., Foster, T., Grasso, T.M., Lesser, M.L., Isom, O.W., Crystal, R.G. (1999). Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation. Aug 3 100 (5), 468-474.

Sarah Furqan. (2017). Programmable DNA Binding Oligomers for Control of Transcription in angiogenesis. Angiotherapy, 1(1), pages 033-035.

Shirley, Kuhnena., Priscilla, Maria., Menel, Lemosa., Luciano, Henrique, Campestrinia., Juliana, Bernardi, Ogliaria., Paulo, Fernando Diasb., Marcelo, Maraschina. (2009). Antiangiogenic properties of carotenoids: A potential role of maize as functional food. Journal functional foods 1: 284-290.

Sunila, E. S., Kuttan, G., (2006). Piper longum inhibits VEGF and pro-inflammatory cytokines and tumor-induced angiogenesis in C57BL/6 mice. Int Immunopharmacol ;6:733-41.

Suzana Binte Hashim. (2017). A critical disease approach of angiogenesis in obese patients, 1(1), pages 041-043.

Tai-Ping Fan., Ju-Ching Yeh., Kar Wah Leung Y.K. Yue and Ricky N. N Wong.(2006). Angiogenesis: from plants to blood vessels. Trend in pharmacological sciences. Vol 27 No. 6.

Tan, W.F., Lin, L.P., Li, M.H., Zhang, Y.X., Tong, Y.G., Xiao, D., Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur J Pharmacol ;459:255-62.

Tonnesen, M.G., Feng, X., Clark, R.A.F. (2000). Angiogenesis in wound healing. J Investig Dermatol Symp Proc, 5:40- 46.

Walsh, D.A., Pearson, C.I. (2001). Angiogenesis in the pathogenesis of inflammatory joint and lung diseases. Arthritis Res ;31: 147-53.

Wang Shanshan., Zhengui, Zheng., Yinqi, Weng., Yijun, Yuc., Daifu, Zhanga., Weihu, Fanb., Ruihong, Daib,, Zhibi, Hua. (2004). Anti-angiogenesis activity of Chinese medicinal herbal extracts. Life Sciences 74, 2467-2478.

Yance, D.R., Saga, S.M. (2006). Targeting angiogenesis with integrative cancer therapies. Integr Cancer Ther;5:9-29.

Yusoff, Sa’adiah Mohd.; Asmawi, Mohd Zaini; Abdul Majid, Amin M. S.; Basheer, Mohamed Khadeer A.; Mohamed, Shazmin Kithur; Asif, Muhammad; Jafari, Seyedeh Fatemeh; Baharetha, Hussein Mahfoudh. (2017). Anti-angiogenesis as a Possible mechanism of action for anti-tumour (potential anti-cancer) activity of Crinum asiaticum leaf methanol extract. Angiotherapy, 1(1), pages 012–017.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
391
View
0
Share