Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Smart Wound Monitoring and Healing Assessment System With Deep Learning Methods - A Systematic Review

Abhijeet  Madhukar Haval 1*, Akanksha Mishra 1, Sushree Sasmita Dash 1

+ Author Affiliations

Journal of Angiotherapy 8(1) 1-9 https://doi.org/10.25163/angiotherapy.819489

Submitted: 09 November 2023  Revised: 15 January 2024  Published: 25 January 2024 

Wound features impact healing; indicators like temperature, oxygen levels, and moisture influence the process. This review shows and effective at-home wound monitoring with biosensors.

Abstract


This review describes a Deep Learning Smart Wound Monitoring (DL-SWM) system, focusing on the healing process of both acute and chronic skin wounds. Recognizing the impact of various factors such as environment, patient characteristics, and wound features on the healing timeline, the review emphasizes the need for more efficient wound monitoring methods. The proposed DL-SWM integrates biosensors, a microcontroller, and a fuzzy inference system to assess critical wound indicators, primarily focusing on hydration levels. The hardware design incorporates an Arduino-based biometric sensor device, while the fuzzy inference system predicts the impact of biomarkers on wound hydration. The review study also explores the segmentation of wounds using a Convolutional Neural Network (CNN) called MobileNetV2, providing detailed insights into the wound healing stages. In the literature review, various advancements in wound monitoring technologies, such as hydrogels, clinical decision-making systems, and wearable biological sensors, are discussed. The proposed DL-SWM is compared with existing methods through simulation analysis, demonstrating superior efficiency, accuracy, and lower error rates. The study concludes with the potential prospects of DL-SWM in revolutionizing wound monitoring and treatment, offering a more convenient and effective approach for healthcare practitioners and improving patient outcomes.

Keywords: Wound Monitoring, Healing System, Biosensor Technology, Deep Learning, Fuzzy Inference System

References


Adnan, M., Asif, M., Ahmad, M. B., Mahmood, T., Masood, K., Ashraf, R., & Faisal, C. N. (2023, July). An Automatic Wound Detection System Empowered by Deep Learning. In Journal of Physics: Conference Series (Vol. 2547, No. 1, p. 012005). IOP Publishing.

https://doi.org/10.1088/1742-6596/2547/1/012005

 

Chen, Y. W., Hsu, J. T., Hung, C. C., Wu, J. M., Lai, F., & Kuo, S. Y. (2018). Surgical wounds assessment system for self-care. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(12), 5076-5091.

https://doi.org/10.1109/TSMC.2018.2856405

 

Cicceri, G., De Vita, F., Bruneo, D., Merlino, G., & Puliafito, A. (2020). A deep learning approach for pressure ulcer prevention using wearable computing. Human-centric Computing and Information Sciences, 10(1), 1-21.

https://doi.org/10.1186/s13673-020-0211-8

 

Cui, L., Li, J., Guan, S., Zhang, K., Zhang, K., Li, J. (2022). Injectable multifunctional CMC/HA-DA hydrogel for repairing skin injury. Materials Today Bio. 14, 100257.

https://doi.org/10.1016/j.mtbio.2022.100257

 

Curti, N., Merli, Y., Zengarini, C., Starace, M., Rapparini, L., Marcelli, E., ... & Giampieri, E. (2024). Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images. Journal of Medical Systems, 48(1), 14.

https://doi.org/10.1007/s10916-023-02029-9

 

Falanga, V., Isseroff, R.R., Soulika, A.M., Romanelli, M., Margolis, D., Kapp, S., Harding, K. (2022). Nat. Rev. Dis. Primers. 8(1), 50.

https://doi.org/10.1038/s41572-022-00377-3

 

Farahani, M., & Shafiee, A. (2021). Wound healing: From passive to smart dressings. Advanced Healthcare Materials, 10(16), 2100477.

https://doi.org/10.1002/adhm.202100477

 

Garland, N.T., Song, J.W., Ma, T., Kim, Y.J., Vázquez-Guardado, A., Hashkavayi, A. B., Bandodkar, A.J. (2023). A Miniaturized, Battery-Free, Wireless Wound Monitor That Predicts Wound Closure Rate Early. Adv. Healthc. Mater. 12(28), 2301280.

https://doi.org/10.1002/adhm.202301280

 

Huang, S.T., Chu, Y.C., Liu, L.R., Yao, W.T., Chen, Y.F., Yu, C.M., Tsai, M.F. (2023). Deep Learning-Based Clinical Wound Image Analysis Using a Mask R-CNN Architecture. J Med Biol Eng. 43(4), 417-426.

https://doi.org/10.1007/s40846-023-00802-2

 

Jeong, S.H., Cheong, S., Kim, T.Y., Choi, H., Hahn, S.K. (2023). Supramolecular hydrogels for precisely controlled antimicrobial peptide delivery for diabetic wound healing. ACS Appl. Mater. Interfaces. 15(13), 16471-16481.

https://doi.org/10.1021/acsami.3c00191

 

Khalil, A., Elmogy, M., Ghazal, M., Burns, C., & El-Baz, A. (2019). Chronic wound healing assessment system based on different features modalities and non-negative matrix factorization (nmf) feature reduction. IEEE Access, 7, 80110-80121.

https://doi.org/10.1109/ACCESS.2019.2923962

 

Kumar, B. S., Anandakrishan, K. C., Sumant, M., & Jayaraman, S. (2023). Wound Care: Wound Management System. IEEE Access.

https://doi.org/10.1109/ACCESS.2023.3271011

 

Kumar, B.S., Anandakrishan, K.C., Sumant, M., Jayaraman, S. (2023). Wound Care: Wound Management System. IEEE Access.

https://doi.org/10.1109/ACCESS.2023.3271011

 

Lustig, M., Schwartz, D., Bryant, R., Gefen, A. (2022). A machine learning algorithm for early detection of heel deep tissue injuries based on a daily history of sub-epidermal moisture measurements. Int. Wound J. 19(6), 1339-1348.

https://doi.org/10.1111/iwj.13728

 

Mirhaj, M., Labbaf, S., Tavakoli, M., Seifalian, A.M. (2022). Emerging treatment strategies in wound care. Int. Wound J. 19(7), 1934-1954.

https://doi.org/10.1111/iwj.13786

 

Peterson, C., Miller, G.F., Barnett, S.B.L., Florence, C. (2021). Economic cost of injury-United States, 2019. Morb Mortal Wkly Rep. 70(48), 1655.

https://doi.org/10.15585/mmwr.mm7048a1

 

Phiri, C.C., Valle, C., Botzheim, J., Ju, Z., Liu, H. (2021). Fuzzy rule-based model for outlier detection in a topical negative pressure wound therapy device. ISA Trans. 117, 16-27.

https://doi.org/10.1016/j.isatra.2021.01.046

 

Qi, L., Zhang, C., Wang, B., Yin, J., Yan, S. (2022). Progress in hydrogels for skin wound repair. Macromol. Biosci. 22(7), 2100475.

https://doi.org/10.1002/mabi.202100475

 

Sattar, H., Bajwa, I.S., Shafi, U.F. (2022). An IoT-assisted clinical decision support system for wound healthcare monitoring. Comput. Intell. 38(1), 269-306.

https://doi.org/10.1111/coin.12482

 

Scebba, G., Zhang, J., Catanzaro, S., Mihai, C., Distler, O., Berli, M., Karlen, W. (2022). Detect-and-segment: A deep learning approach to automate wound image segmentation. Inform. Med. Unlocked. 29, 100884.

https://doi.org/10.1016/j.imu.2022.100884

 

Short, W. D., Olutoye, O. O., Padon, B. W., Parikh, U. M., Colchado, D., Vangapandu, H., ... & Balaji, S. (2022). Advances in non-invasive biosensing measures to monitor wound healing progression. Frontiers in bioengineering and biotechnology, 10, 952198.

https://doi.org/10.3389/fbioe.2022.952198

 

Wang, C., Shirzaei Sani, E., Gao, W. (2022). Wearable bioelectronics for chronic wound management. Adv. Funct. Mater. 32(17), 2111022.

https://doi.org/10.1002/adfm.202111022

 

Wang, L., Pedersen, P. C., Strong, D. M., Tulu, B., Agu, E., & Ignotz, R. (2014). Smartphone-based wound assessment system for patients with diabetes. IEEE Transactions on Biomedical Engineering, 62(2), 477-488.

https://doi.org/10.1109/TBME.2014.2358632

 

Wang, L., Zhou, M., Xu, T., Zhang, X. (2022). Multifunctional hydrogel as wound dressing for intelligent wound monitoring. J. Chem. Eng. 433, 134625.

https://doi.org/10.1016/j.cej.2022.134625

 

Wang, L., Zhou, M., Xu, T., Zhang, X. (2022). Multifunctional hydrogel as wound dressing for intelligent wound monitoring. J. Chem. Eng. 433, 134625.

https://doi.org/10.1016/j.cej.2022.134625

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
384
View
0
Share