References
Adnan, M., Asif, M., Ahmad, M. B., Mahmood, T., Masood, K., Ashraf, R., & Faisal, C. N. (2023, July). An Automatic Wound Detection System Empowered by Deep Learning. In Journal of Physics: Conference Series (Vol. 2547, No. 1, p. 012005). IOP Publishing.
https://doi.org/10.1088/1742-6596/2547/1/012005
Chen, Y. W., Hsu, J. T., Hung, C. C., Wu, J. M., Lai, F., & Kuo, S. Y. (2018). Surgical wounds assessment system for self-care. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(12), 5076-5091.
https://doi.org/10.1109/TSMC.2018.2856405
Cicceri, G., De Vita, F., Bruneo, D., Merlino, G., & Puliafito, A. (2020). A deep learning approach for pressure ulcer prevention using wearable computing. Human-centric Computing and Information Sciences, 10(1), 1-21.
https://doi.org/10.1186/s13673-020-0211-8
Cui, L., Li, J., Guan, S., Zhang, K., Zhang, K., Li, J. (2022). Injectable multifunctional CMC/HA-DA hydrogel for repairing skin injury. Materials Today Bio. 14, 100257.
https://doi.org/10.1016/j.mtbio.2022.100257
Curti, N., Merli, Y., Zengarini, C., Starace, M., Rapparini, L., Marcelli, E., ... & Giampieri, E. (2024). Automated Prediction of Photographic Wound Assessment Tool in Chronic Wound Images. Journal of Medical Systems, 48(1), 14.
https://doi.org/10.1007/s10916-023-02029-9
Falanga, V., Isseroff, R.R., Soulika, A.M., Romanelli, M., Margolis, D., Kapp, S., Harding, K. (2022). Nat. Rev. Dis. Primers. 8(1), 50.
https://doi.org/10.1038/s41572-022-00377-3
Farahani, M., & Shafiee, A. (2021). Wound healing: From passive to smart dressings. Advanced Healthcare Materials, 10(16), 2100477.
https://doi.org/10.1002/adhm.202100477
Garland, N.T., Song, J.W., Ma, T., Kim, Y.J., Vázquez-Guardado, A., Hashkavayi, A. B., Bandodkar, A.J. (2023). A Miniaturized, Battery-Free, Wireless Wound Monitor That Predicts Wound Closure Rate Early. Adv. Healthc. Mater. 12(28), 2301280.
https://doi.org/10.1002/adhm.202301280
Huang, S.T., Chu, Y.C., Liu, L.R., Yao, W.T., Chen, Y.F., Yu, C.M., Tsai, M.F. (2023). Deep Learning-Based Clinical Wound Image Analysis Using a Mask R-CNN Architecture. J Med Biol Eng. 43(4), 417-426.
https://doi.org/10.1007/s40846-023-00802-2
Jeong, S.H., Cheong, S., Kim, T.Y., Choi, H., Hahn, S.K. (2023). Supramolecular hydrogels for precisely controlled antimicrobial peptide delivery for diabetic wound healing. ACS Appl. Mater. Interfaces. 15(13), 16471-16481.
https://doi.org/10.1021/acsami.3c00191
Khalil, A., Elmogy, M., Ghazal, M., Burns, C., & El-Baz, A. (2019). Chronic wound healing assessment system based on different features modalities and non-negative matrix factorization (nmf) feature reduction. IEEE Access, 7, 80110-80121.
https://doi.org/10.1109/ACCESS.2019.2923962
Kumar, B. S., Anandakrishan, K. C., Sumant, M., & Jayaraman, S. (2023). Wound Care: Wound Management System. IEEE Access.
https://doi.org/10.1109/ACCESS.2023.3271011
Kumar, B.S., Anandakrishan, K.C., Sumant, M., Jayaraman, S. (2023). Wound Care: Wound Management System. IEEE Access.
https://doi.org/10.1109/ACCESS.2023.3271011
Lustig, M., Schwartz, D., Bryant, R., Gefen, A. (2022). A machine learning algorithm for early detection of heel deep tissue injuries based on a daily history of sub-epidermal moisture measurements. Int. Wound J. 19(6), 1339-1348.
https://doi.org/10.1111/iwj.13728
Mirhaj, M., Labbaf, S., Tavakoli, M., Seifalian, A.M. (2022). Emerging treatment strategies in wound care. Int. Wound J. 19(7), 1934-1954.
https://doi.org/10.1111/iwj.13786
Peterson, C., Miller, G.F., Barnett, S.B.L., Florence, C. (2021). Economic cost of injury-United States, 2019. Morb Mortal Wkly Rep. 70(48), 1655.
https://doi.org/10.15585/mmwr.mm7048a1
Phiri, C.C., Valle, C., Botzheim, J., Ju, Z., Liu, H. (2021). Fuzzy rule-based model for outlier detection in a topical negative pressure wound therapy device. ISA Trans. 117, 16-27.
https://doi.org/10.1016/j.isatra.2021.01.046
Qi, L., Zhang, C., Wang, B., Yin, J., Yan, S. (2022). Progress in hydrogels for skin wound repair. Macromol. Biosci. 22(7), 2100475.
https://doi.org/10.1002/mabi.202100475
Sattar, H., Bajwa, I.S., Shafi, U.F. (2022). An IoT-assisted clinical decision support system for wound healthcare monitoring. Comput. Intell. 38(1), 269-306.
https://doi.org/10.1111/coin.12482
Scebba, G., Zhang, J., Catanzaro, S., Mihai, C., Distler, O., Berli, M., Karlen, W. (2022). Detect-and-segment: A deep learning approach to automate wound image segmentation. Inform. Med. Unlocked. 29, 100884.
https://doi.org/10.1016/j.imu.2022.100884
Short, W. D., Olutoye, O. O., Padon, B. W., Parikh, U. M., Colchado, D., Vangapandu, H., ... & Balaji, S. (2022). Advances in non-invasive biosensing measures to monitor wound healing progression. Frontiers in bioengineering and biotechnology, 10, 952198.
https://doi.org/10.3389/fbioe.2022.952198
Wang, C., Shirzaei Sani, E., Gao, W. (2022). Wearable bioelectronics for chronic wound management. Adv. Funct. Mater. 32(17), 2111022.
https://doi.org/10.1002/adfm.202111022
Wang, L., Pedersen, P. C., Strong, D. M., Tulu, B., Agu, E., & Ignotz, R. (2014). Smartphone-based wound assessment system for patients with diabetes. IEEE Transactions on Biomedical Engineering, 62(2), 477-488.
https://doi.org/10.1109/TBME.2014.2358632
Wang, L., Zhou, M., Xu, T., Zhang, X. (2022). Multifunctional hydrogel as wound dressing for intelligent wound monitoring. J. Chem. Eng. 433, 134625.
https://doi.org/10.1016/j.cej.2022.134625
Wang, L., Zhou, M., Xu, T., Zhang, X. (2022). Multifunctional hydrogel as wound dressing for intelligent wound monitoring. J. Chem. Eng. 433, 134625.
https://doi.org/10.1016/j.cej.2022.134625