References
Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
Bækgaard, J. S., Viereck, S., Møller, T. P., Ersbøll, A. K., Lippert, F., & Folke, F. (2017). The effects of public access defibrillation on survival after out-of-hospital cardiac arrest: A systematic review of observational studies. Circulation, 136(10), 954–965. https://doi.org/10.1161/CIRCULATIONAHA.117.029067
Baldi, E., Auricchio, A., Klersy, C., Burkart, R., Benvenuti, C., Vanetta, C., & Bärtschi, J. (2021). Out-of-hospital cardiac arrests and mortality in Swiss Cantons with high and low COVID-19 incidence: A nationwide analysis. Resuscitation Plus, 6, Article 100105. https://doi.org/10.1016/j.resplu.2021.100105
Baldi, E., Grieco, N. B., Ristagno, G., Alihodžic, H., Canon, V., Birkun, A., Cresta, R., Cimpoesu, D., Clarens, C., Ganter, J., & others. (2021). The automated external defibrillator: Heterogeneity of legislation, mapping and use across Europe. New insights from the ENSURE study. Journal of Clinical Medicine, 10(21), Article 5018. https://doi.org/10.3390/jcm10215018
Bauer, J., Moormann, D., Strametz, R., & Groneberg, D. A. (2021). Development of unmanned aerial vehicle (UAV) networks delivering early defibrillation for out-of-hospital cardiac arrests (OHCA) in areas lacking timely access to emergency medical services (EMS) in Germany: A comparative economic study. BMJ Open, 11(4), Article e043791. https://doi.org/10.1136/bmjopen-2020-043791
Baumgarten, M. C., Röper, J., Hahnenkamp, K., & Thies, K.-C. (2022). Drones delivering automated external defibrillators—Integrating unmanned aerial systems into the chain of survival: A simulation study in rural Germany. Resuscitation, 172, 139–145. https://doi.org/10.1016/j.resuscitation.2022.01.025
Berg, K. M., Cheng, A., Panchal, A. R., Topjian, A. A., Aziz, K., Bhanji, F., Bigham, B. L., Hirsch, K. G., Hoover, A. V., Kurz, M. C., & others. (2020). Part 7: Systems of care: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation, 142(16_suppl_2), S580–S604. https://doi.org/10.1161/CIR.0000000000000899
Bogle, B. M., Rosamond, W. D., Snyder, K. T., & Zegre-Hemsey, J. K. (2019). The case for drone-assisted emergency response to cardiac arrest: An optimized statewide deployment approach. North Carolina Medical Journal, 80(4), 204–212. https://doi.org/10.18043/ncm.80.4.204
Boutilier, J. J. (2019). Emergency medical services response optimization (Doctoral dissertation, University of Toronto, Toronto, ON, Canada). https://tspace.library.utoronto.ca/handle/1807/95894
Cheskes, S., McLeod, S. L., Nolan, M., Snobelen, P., Vaillancourt, C., Brooks, S. C., Dainty, K. N., Chan, T. C. Y., & Drennan, I. R. (2020). Improving access to automated external defibrillators in rural and remote settings: A drone delivery feasibility study. Journal of the American Heart Association, 9(14), Article e016687. https://doi.org/10.1161/JAHA.120.016687
Chin, Y. H., Yaow, C. Y. L., Teoh, S. E., Foo, M. Z. Q., Luo, N., Graves, N., Ong, M. E. H., & Ho, A. F. W. (2022). Long-term outcomes after out-of-hospital cardiac arrest: A systematic review and meta-analysis. Resuscitation, 171, 15–29. https://doi.org/10.1016/j.resuscitation.2021.12.032
Choi, D. S., Hong, K. J., Shin, S. D., Lee, C.-G., Kim, T. H., Cho, Y., Song, K. J., Ro, Y. S., Park, J. H., & Kim, K. H. (2021). Effect of topography and weather on delivery of automatic electrical defibrillator by drone for out-of-hospital cardiac arrest. Scientific Reports, 11, Article 24195. https://doi.org/10.1038/s41598-021-03407-0
Chu, J., Leung, K. B., Snobelen, P., Nevils, G., Drennan, I. R., Cheskes, S., & Chan, T. C. (2021). Machine learning-based dispatch of drone-delivered defibrillators for out-of-hospital cardiac arrest. Resuscitation, 162, 120–127. https://doi.org/10.1016/j.resuscitation.2021.02.028
Claesson, A., Bäckman, A., Ringh, M., Svensson, L., Nordberg, P., Djärv, T., & Hollenberg, J. (2017). Time to delivery of an automated external defibrillator using a drone for simulated out-of-hospital cardiac arrests vs emergency medical services. JAMA, 317(22), 2332–2334. https://doi.org/10.1001/jama.2017.3957
Claesson, A., Fredman, D., Svensson, L., Ringh, M., Hollenberg, J., Nordberg, P., Rosenqvist, M., Djarv, T., Österberg, S., Lennartsson, J., & others. (2016). Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 24, Article 124. https://doi.org/10.1186/s13049-016-0313-5
Deakin, C. D., Anfield, S., & Hodgetts, G. A. (2018). Underutilisation of public access defibrillation is related to retrieval distance and time-dependent availability. Heart, 104(16), 1339–1343. https://doi.org/10.1136/heartjnl-2017-312598
Delhomme, C., Njeim, M., Varlet, E., Pechmajou, L., Benameur, N., Cassan, P., Derkenne, C., Jost, D., Lamhaut, L., Marijon, E., & others. (2019). Automated external defibrillator use in out-of-hospital cardiac arrest: Current limitations and solutions. Archives of Cardiovascular Diseases, 112(3), 217–222. https://doi.org/10.1016/j.acvd.2018.11.011
Derkenne, C., Jost, D., De L’Espinay, A. M., Corpet, P., Frattini, B., Hong, V., Lemoine, F., Jouffroy, R., Roquet, F., Marijon, E., & others. (2021). Automatic external defibrillator provided by unmanned aerial vehicle (drone) in Greater Paris: A real world-based simulation. Resuscitation, 162, 259–265. https://doi.org/10.1016/j.resuscitation.2021.03.001
El Sibai, R. H., Bachir, R. H., & El Sayed, M. J. (2021). Seasonal variation in incidence and outcomes of out of hospital cardiac arrest: A retrospective national observational study in the United States. Medicine, 100(17), Article e25643. https://doi.org/10.1097/MD.0000000000025643
Glick, T. B., Figliozzi, M., & Unnikrishnan, A. (2020). A case study of the reliability of time-sensitive drone deliveries. In Proceedings of the 8th International Conference on Information Systems, Logistics and Supply Chain: Interconnected Supply Chains in an Era of Innovation, ILS 2020 (pp. 1–10). Austin, TX, USA.
Kaneko, H., Hatanaka, T., Nagase, A., Marukawa, S., & Sakamoto, T. (2018). Abstract 197: What limits the use of AEDs by bystanders? Circulation, 138(Suppl_1), A197. https://doi.org/10.1161/circ.138.suppl_1.197
Lancaster, G., & Herrmann, J. (2021). Simulating cardiac arrest events to evaluate novel emergency response systems. IISE Transactions on Healthcare Systems Engineering, 11(1), 38–50. https://doi.org/10.1080/24725579.2020.1846544
Lee, S. G. W., Park, J. H., Ro, Y. S., Hong, K. J., Song, K. J., & Shin, S. D. (2021). Time to first defibrillation and survival outcomes of out-of-hospital cardiac arrest with refractory ventricular fibrillation. American Journal of Emergency Medicine, 40, 96–102. https://doi.org/10.1016/j.ajem.2020.12.010
Lim, S. L., Smith, K., Dyson, K., Chan, S. P., Earnest, A., Nair, R., Bernard, S., Leong, B. S., Arulanandam, S., Ng, Y. Y., & others. (2020). Incidence and outcomes of out-of-hospital cardiac arrest in Singapore and Victoria: A collaborative study. Journal of the American Heart Association, 9(21), Article e015981. https://doi.org/10.1161/JAHA.120.015981
Lim, Z. J., Reddy, M. P., Afroz, A., Billah, B., Shekar, K., & Subramaniam, A. (2020). Incidence and outcome of out-of-hospital cardiac arrests in the COVID-19 era: A systematic review and meta-analysis. Resuscitation, 157, 248–258. https://doi.org/10.1016/j.resuscitation.2020.10.025
Mackle, C., Bond, R., Torney, H., Mcbride, R., Mclaughlin, J., Finlay, D., Biglarbeigi, P., Brisk, R., Harvey, A., & Mc Eneaney, D. (2020). A data-driven simulator for the strategic positioning of aerial ambulance drones reaching out-of-hospital cardiac arrests: A genetic algorithmic approach. IEEE Journal of Translational Engineering in Health and Medicine, 8, Article 1900410. https://doi.org/10.1109/JTEHM.2020.2987737
Masuda, Y., Teoh, S. E., Yeo, J. W., Tan, D. J. H., Jimian, D. L., Lim, S. L., Ong, M. E. H., Blewer, A. L., & Ho, A. F. W. (2022). Variation in community and ambulance care processes for out-of-hospital cardiac arrest during the COVID-19 pandemic: A systematic review and meta-analysis. Scientific Reports, 12, Article 800. https://doi.org/10.1038/s41598-021-04749-9
Pulver, A., & Wei, R. (2018). Optimizing the spatial location of medical drones. Applied Geography, 90, 9–16. https://doi.org/10.1016/j.apgeog.2017.11.006
Pulver, A., Wei, R., & Mann, C. (2016). Locating AED enabled medical drones to enhance cardiac arrest response times. Prehospital Emergency Care, 20(3), 378–389. https://doi.org/10.3109/10903127.2015.1115932
Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., & Rinner, B. (2010). Networked UAVs as aerial sensor network for disaster management applications. Elektrotechnik und Informationstechnik, 127(3), 56–63. https://doi.org/10.1007/s00502-010-0717-4
Rachunok, B., Mayorga, M., Saydam, C., & Rajagopalan, H. (2016). UAVs provide life-saving medical care. In Proceedings of the 2016 Industrial and Systems Engineering Research Conference (pp. 1–10). Anaheim, CA, USA.
Rees, N., Howitt, J., Breyley, N., Geoghegan, P., & Powel, C. (2021). A simulation study of drone delivery of automated external defibrillator (AED) in out of hospital cardiac arrest (OHCA) in the UK. PLoS ONE, 16(11), Article e0259555. https://doi.org/10.1371/journal.pone.0259555
Ringh, M., Hollenberg, J., Palsgaard-Moeller, T., Svensson, L., Rosenqvist, M., Lippert, F., Wissenberg, M., Hansen, C. M., Claesson, A., Viereck, S., & others. (2018). The challenges and possibilities of public access defibrillation. Journal of Internal Medicine, 283(3), 238–256. https://doi.org/10.1111/joim.12730
Rosamond, W. D., Johnson, A., Bogle, B., Arnold, E., Cunningham, C., Picinich, M., Williams, B., & Zegre-Hemsey, J. (2020). Aerial drone versus ground search for delivery of an automated external defibrillator (AED) for out-of-hospital cardiac arrest: A comparison of elapsed time and bystander experience in a community setting. Circulation, 141(Suppl_1), A53. https://doi.org/10.1161/circ.141.suppl_1.53
Sanfridsson, J., Sparrevik, J., Hollenberg, J., Nordberg, P., Djärv, T., Ringh, M., Svensson, L., Forsberg, S., Nord, A., Andersson-Hagiwara, M., & others. (2019). Drone delivery of an automated external defibrillator—A mixed method simulation study of bystander experience. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 27, Article 40. https://doi.org/10.1186/s13049-019-0622-6
Sasson, C., Rogers, M. A., Dahl, J., & Kellermann, A. L. (2010). Predictors of survival from out-of-hospital cardiac arrest: A systematic review and meta-analysis. Circulation: Cardiovascular Quality and Outcomes, 3(1), 63–81. https://doi.org/10.1161/CIRCOUTCOMES.109.889576
Schierbeck, S., Hollenberg, J., Nord, A., Svensson, L., Nordberg, P., Ringh, M., Forsberg, S., Lundgren, P., Axelsson, C., & Claesson, A. (2022). Automated external defibrillators delivered by drones to patients with suspected out-of-hospital cardiac arrest. European Heart Journal, 43(15), 1478–1487. https://doi.org/10.1093/eurheartj/ehab498
Schierbeck, S., Nord, A., Svensson, L., Rawshani, A., Hollenberg, J., Ringh, M., Forsberg, S., Nordberg, P., Hilding, F., & Claesson, A. (2021). National coverage of out-of-hospital cardiac arrests using automated external defibrillator-equipped drones—A geographical information system analysis. Resuscitation, 163, 136–145. https://doi.org/10.1016/j.resuscitation.2021.04.009
Sedig, K., Seaton, M., Drennan, I., Cheskes, S., & Dainty, K. (2020). “Drones are a great idea! What is an AED?” Novel insights from a qualitative study on public perception of using drones to deliver automatic external defibrillators. Resuscitation Plus, 4, Article 100033. https://doi.org/10.1016/j.resplu.2020.100033
Smith, C. M., Keung, S. N. L. C., Khan, M. O., Arvanitis, T. N., Fothergill, R., Hartley-Sharpe, C., Wilson, M. H., & Perkins, G. (2017). Barriers and facilitators to public access defibrillation in out-of-hospital cardiac arrest: A systematic review. European Heart Journal - Quality of Care and Clinical Outcomes, 3(4), 264–273. https://doi.org/10.1093/ehjqcco/qcx023
Starks, M. A., Blewer, A. L., Sharpe, E., Van Vleet, L., Riley, J., Arnold, E., Slattery, J., Joiner, A., Buckland, D. M., Ye, J., & others. (2020). Bystander performance during simulated drone delivery of an AED for mock out-of-hospital cardiac arrest. Journal of the American College of Cardiology, 75(11_Supplement_1), 303. https://doi.org/10.1016/S0735-1097(20)30930-3
Valenzuela, T. D., Roe, D. J., Cretin, S., Spaite, D. W., & Larsen, M. P. (1997). Estimating effectiveness of cardiac arrest interventions. Circulation, 96(10), 3308–3313. https://doi.org/10.1161/01.CIR.96.10.3308
Zègre-Hemsey, J. K., Grewe, M. E., Johnson, A. M., Arnold, E., Cunningham, C. J., Bogle, B. M., & Rosamond, W. D. (2020). Delivery of automated external defibrillators via drones in simulated cardiac arrest: Users’ experiences and the human-drone interaction. Resuscitation, 157, 83–88. https://doi.org/10.1016/j.resuscitation.2020.10.006