Inflammation Cancer Angiogenesis Biology and Therapeutics | Impact 0.1 (CiteScore) | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Lanctos 75™ is A Novel Retino-Protective and Neovascular Inhibitor for Diabetic Retinopathy

Fouad Saleih Resq Al-Suede 1, Muhammad Asyraf Abduraman 1, Indumathi Ashok 2, Gnanasekaran Ashok 3, Khadeer Ahamed basheer 1, Amin Malik Shah Abdul Majid 4,5*, Aman Shah Abdul Majid 2*

+ Author Affiliations

Journal of Angiotherapy 8(7) 1-6 https://doi.org/10.25163/angiotherapy.879827

Submitted: 28 July 2024  Revised: 28 July 2024  Published: 28 July 2024 

Abstract

Diabetic retinopathy (DR) is a prominent angiogenesis-dependent neurovascular complication. The present study aimed to evaluate the efficacy and safety of Lanctos 75™ extract code name C5OSEW5050ESA, which is a proprietry standardized extract of Orthosiphon stamineus leaves, as a retino-protective and neovascular inhibitory agent against streptozotocin-induced diabetic retinopathy in rats and other related models. This study investigated the safety profile and neuroprotective properties of Lanctos 75™ in various in vitro and in vivo models of neuronal injury induced by ischemia. The in vivo inhibitory effect of was investigated using a streptozotocin-induced diabetic retinopathy in rats. Results of in vitro neuroprotective studies using RGC-5 cells showed that Lanctos 75™ demonstrated significant cytoprotection by suppressing apoptosis induction in the cells. PanOptic ophthalmoscopic imaging of the fundus of the eyes in streptozotocin-induced diabetic rats revealed that Lanctos 75™ protected the animals against diabetes-induced retinal damage and inhibited the formation of microaneurysms, hemorrhages, vascular leakage, retinal venous beading, and inflammation in the retina. Similarly, fluorescence molecular tomography (FMT) imaging provided further supportive information towards the protective effect of Lanctos 75™  against ischemia-reperfusion injury inflammatory response. From the overall results, it can be concluded that Lanctos 75™ containing an effective dose of O. stamineus demonstrates promising potential as an adjunctive therapeutic agent for the treatment and management of diabetic retinopathy and other neovascularization-related ophthalmic complications.

Keywords: Oxidative Stress, Angiogenesis Inhibition, Ocular Drug Delivery Orthosiphon Stamineus, Lanctos 75™, C5OSEW5050ESA, Neovascularization, Diabetic Retinopathy

References

Almoustafa, H. A., Alshawsh, M. A., Al-Suede, F. S. R., Alshehade, S. A., Abdul Majid, A. M. S., & Chik, Z. (2023). The chemotherapeutic efficacy of hyaluronic acid-coated polymeric nanoparticles against breast cancer metastasis in female NCr-Nu/Nu nude mice. Polymers, 15(2), 284.

Alshehade, S. A., Al Zarzour, R. H., Mathai, M., Giribabu, N., Seyedan, A., Kaur, G., et al. (2023). Orthosiphon aristatus (Blume) Miq alleviates non-alcoholic fatty liver disease via antioxidant activities in C57BL/6 obese mice and palmitic-oleic acid-induced steatosis in HepG2 cells. Pharmaceuticals, 16(1), 109.

Al-Suede, F. S. R., Farsi, E., Ahamed, M. K. B., Ismail, Z., Majid, A. S. A., & Majid, A. (2014). Marked antitumor activity of cat’s whiskers tea (Orthosiphon stamineus) extract in an orthotopic model of human colon tumor in nude mice. Journal of Biochemical Technology, 3(5), S170–176.

Al-Suede, F. S. R., Khadeer Ahamed, M. B., Abdul Majid, A. S., Baharetha, H. M., Hassan, L. E., & Kadir, M. O. A., et al. (2014). Optimization of cat’s whiskers tea (Orthosiphon stamineus) using supercritical carbon dioxide and selective chemotherapeutic potential against prostate cancer cells. Evidence-Based Complementary and Alternative Medicine, 2014.

Al-Suede, F. S. R., Saghir, S., Oon, C., & Abdul Majid, A. (2021). Immunomodulatory and antiangiogenic mechanisms of polymolecular botanical drug extract C5OSEW5050ESA OS derived from Orthosiphon stamineus. Journal of Angiotherapy, 5(194), 10.25163.

Ashraf, K., Sultan, S., & Adam, A. (2018). Orthosiphon stamineus Benth. is an outstanding food medicine: Review of phytochemical and pharmacological activities. Journal of Pharmacy and Bioallied Sciences, 10(3), 109.

Badroon, N., Abdul Majid, N., Al-Suede, F. S. R., Nazari, V. M., Giribabu, N., & Abdul Majid, A. M. S., et al. (2020). Cardamonin exerts an antitumor effect on human hepatocellular carcinoma xenografts implanted in nude mice via downregulation of PD-L1. Journal of Ethnopharmacology, 261, 113151.

Chen, C., & Shah, C. P. (2011). Review of therapeutic advances in diabetic retinopathy. Therapeutic Advances in Endocrinology and Metabolism, 2(1), 39–53.

Cheng, Q., Wang, S., Rials, T. G., & Lee, S. H. (2007). Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose, 14, 593–602.

Dratviman-Storobinsky, O., Hasanreisoglu, M., Offen, D., Barhum, Y., Weinberger, D., & Goldenberg-Cohen, N. (2008). Progressive damage along the optic nerve following induction of crush injury or rodent anterior ischemic optic neuropathy in transgenic mice. Molecular Vision, 14, 2171.

Gore, A., Horwitz, V., Cohen, M., Gutman, H., Cohen, L., Gez, R., et al. (2018). Successful single treatment with ziv-aflibercept for existing corneal neovascularization following ocular chemical insult in the rabbit model. Experimental Eye Research, 171, 183–191.

Ibrahim, A. H., Khan, M. S. S., Al-Rawi, S. S., Ahamed, M. B. K., Majid, A. S. B. A., Al-Suede, F. S. R., et al. (2016). Safety assessment of widely used fermented virgin coconut oil (Cocos nucifera) in Malaysia: Chronic toxicity studies and SAR analysis of the active components. Regulatory Toxicology and Pharmacology, 81, 457–467.

Joza, N., Susin, S. A., Daugas, E., Stanford, W. L., Cho, S. K., Li, C. Y., et al. (2001). Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 410(6828), 549–554.

Khalilpour, S., Behnammanesh, G., Suede, F., Ezzat, M. O., Muniandy, J., & Tabana, Y., et al. (2018). Neuroprotective and anti-inflammatory effects of Rhus coriaria extract in a mouse model of ischemic optic neuropathy. Biomedicines, 6(2), 48.

Khan, M. S. S., Asif, M., Basheer, M. K. A., Kang, C. W., Al-Suede, F. S., Ein, O. C., et al. (2017). Treatment of novel IL17A inhibitor in glioblastoma implementing 3rd generation co-culture cell line and patient-derived tumor model. European Journal of Pharmacology, 803, 24–38.

Lai, A. K. W., & Lo, A. C. (2013). Animal models of diabetic retinopathy: Summary and comparison. Journal of Diabetes Research, 2013.

Miyake, K., Yoshida, M., Inoue, Y., & Hata, Y. (2007). Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. Investigative Ophthalmology & Visual Science, 48(5), 2356–2361.

Nassar, Z. D., Aisha, A. F., Al Suede, F. S. R., Majid, A. S. A., & Majid, A. M. S. A. (2012). In vitro antimetastatic activity of koetjapic acid against breast cancer cells. Biological & Pharmaceutical Bulletin, 35(4), 503–508.

Nazari, V. M., Mahmood, S., Shah, A. M., & Al-Suede, F. S. R. (2022). Suppression of melanoma growth in a murine tumor model using Orthosiphon stamineus Benth. extract loaded in ethanolic phospholipid vesicles (spherosome). Current Drug Metabolism, 23(4), 317–328.

Rajasekar, J., Perumal, M. K., & Vallikannan, B. (2019). A critical review on the anti-angiogenic property of phytochemicals. The Journal of Nutritional Biochemistry, 71, 1–15.

Roberts, F., & Thum, C. K. (2021). Retinal vascular disease. In Lee's Ophthalmic Histopathology (pp. 89–123).

Safi, S. Z., Qvist, R., Kumar, S., Batumalaie, K., & Ismail, I. S. B. (2014). Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. BioMed Research International, 2014.

Sahib, H. B., Aisha, A., Yam, M., Asmawi, M., Ismail, Z., Salhimi, S., et al. (2009). Anti-angiogenic and antioxidant properties of Orthosiphon stamineus Benth. methanolic leaves extract. International Journal of Pharmacology, 5(2), 162–167.

Seigel, G. M. (2014). R28 retinal precursor cells: The first 20 years. Molecular Vision, 20, 301.

Seigel, G. M., Yuan, K., Goldsmith, Z. K., & Morales-Tirado, V. M. (2018). Heterogeneous R28 retinal precursor cells predominantly express retinal ganglion cell and glial cell markers. Investigative Ophthalmology & Visual Science, 59(9), 4592.

Thomas, R. L., Dunstan, F. D., Luzio, S. D., Chowdhury, S. R., North, R. V., Hale, S. L., et al. (2015). Prevalence of diabetic retinopathy within a national diabetic retinopathy screening service. British Journal of Ophthalmology, 99(1), 64–68.

Yang, Y., Hayden, M. R., Sowers, S., Bagree, S. V., & Sowers, J. R. (2010). Retinal redox stress and remodeling in cardiometabolic syndrome and diabetes. Oxidative Medicine and Cellular Longevity, 3(6), 392–403.

Yehya, A. H., Asif, M., Kaur, G., Hassan, L. E., Al-Suede, F. S., Majid, A. M. A., et al. (2019). Toxicological studies of Orthosiphon stamineus (Misai Kucing) standardized ethanol extract in combination with gemcitabine in an athymic nude mice model. Journal of Advanced Research, 15, 59–68.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
5
View
0
Share