Microbial Bioactives

Microbial Bioactives | Online ISSN 2209-2161
279
Citations
170.7k
Views
157
Articles
Your new experience awaits. Try the new design now and help us make it even better
Switch to the new experience
REVIEWS   (Open Access)

From Antioxidants to Enzyme Inhibitors: A Systematic Review and Meta-Analysis of Bioactive Natural Products Targeting Oxidative Stress, Mitochondrial Function, and Microbial Virulence

Abstract 1. Introduction 2. Materials and methods 3. Results 4. Discussion 5. Limitations 6. Conclusion References

Feng Zhao 1*, Jiao Bai 2, Changjing Wu 3, Yanru Deng 4, Qingyun Peng 5,6, Weihao Chen 7, Jiao Xiao 2,8

+ Author Affiliations

Microbial Bioactives 9 (1) 1-8 https://doi.org/10.25163/microbbioacts.9110608

Submitted: 11 October 2025 Revised: 03 January 2026  Accepted: 12 January 2026  Published: 14 January 2026 


Abstract

Natural products continue to serve as a foundational source of pharmacologically relevant molecules due to their chemical diversity and evolutionary optimization for biological interaction. This systematic review and meta-analysis synthesize current evidence on selected classes of bioactive natural products, including L-ascorbic acid and its derivatives, Annonaceous acetogenins, methylxanthines, butenolides, and marine-derived sesterterpenes, with a focus on their mechanistic actions and therapeutic potential. Emphasis is placed on compounds that modulate oxidative stress, mitochondrial bioenergetics, epigenetic regulation, and pathogen-specific metabolic pathways. Pharmacological concentrations of L-ascorbic acid demonstrate prooxidant activity that selectively induces cytotoxicity in cancer cells while also functioning as a cofactor for epigenetic enzymes involved in DNA demethylation. Annonaceous acetogenins, particularly chatenaytrienins, show potent inhibition of mitochondrial complex I, leading to reactive oxygen species generation and programmed cell death, although concerns regarding neurotoxicity remain. Marine suvanine sesterterpenes selectively inhibit isocitrate lyase in the glyoxylate cycle, a pathway essential for fungal virulence but absent in humans, highlighting a promising antivirulence strategy. Butenolide derivatives exhibit a wide spectrum of activities ranging from cytoprotection and cytoproliferation to antifungal and antibacterial effects, with structure–activity relationships guiding potency optimization. Quantitative synthesis of cytotoxicity and antifungal efficacy data supports the therapeutic relevance of these compounds while underscoring the importance of mechanistic specificity. Collectively, this review integrates biochemical, cellular, and computational evidence to evaluate the translational potential and limitations of these natural products in drug discovery.

Keywords: Natural products; butenolides; sesterterpenes; vitamin C; mitochondrial inhibition; isocitrate lyase; oxidative stress; antifungal agents

 

References

Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58(7), 649–662. https://doi.org/10.1002/ps.520

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Wiley. https://doi.org/10.1002/9780470743386

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Wiley. https://doi.org/10.1002/9780470743386

Breijyeh, Z., Jubeh, B., & Karaman, R. (2020). Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 25(6), 1340. https://doi.org/10.3390/molecules25061340

Chan, B., Li, P., Tsang, M., Sung, J., Kwong, K., Zheng, T., Hon, S., Lau, C., Cheng, W., Chen, F., Lau, C., Leung, P., & Wong, C. (2023). Creating a vaccine-like supplement against respiratory infection using recombinant Bacillus subtilis spores expressing SARS-CoV-2 spike protein with natural products. Molecules, 28, 4996. https://doi.org/10.3390/molecules28134996

Chandra, P., Sharma, R. K., & Arora, D. S. (2020). Antioxidant compounds from microbial sources: A review. Food Research International, 129, 108849. https://doi.org/10.1016/j.foodres.2019.108849

Chen, G., Wen, D., Shen, L., Feng, Y., Xiong, Q., Li, P., & Zhao, Z. (2023). Cepharanthine exerts antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-induced macrophages and DSS-induced colitis mice. Molecules, 28, 6070. https://doi.org/10.3390/molecules28166070

Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008

De Castro, I., Mendo, S., & Caetano, T. (2020). Antibiotics from haloarchaea: What can we learn from comparative genomics? Marine Biotechnology, 22, 308–316. https://doi.org/10.1007/s10126-020-09952-9

Degli Esposti, M. (1998). Inhibitors of NADH-ubiquinone reductase: An overview. Biochimica et Biophysica Acta, 1364(2), 222–235. https://doi.org/10.1016/S0005-2728(98)00029-2

Demain, A. L. (2014). Importance of microbial natural products and the need to revitalize their discovery. Journal of Industrial Microbiology & Biotechnology, 41, 185–201. https://doi.org/10.1007/s10295-013-1325-z

DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188. https://doi.org/10.1016/0197-2456(86)90046-2

Dzhemileva, L. U., Tuktarova, R. A., Dzhemilev, U. M., & D’yakonov, V. A. (2023). Natural acetogenins, chatenaytrienins-1, -2, -3 and -4, mitochondrial potential uncouplers and autophagy inducers—Promising anticancer agents. Antioxidants, 12(8), 1528. https://doi.org/10.3390/antiox12081528                   

Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629

Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629

Ekpe, L., Inaku, K., & Ekpe, V. (2018). Antioxidant effects of astaxanthin in various diseases—A review. Journal of Molecular Pathophysiology, 7, 1–6. https://doi.org/10.5455/jmp.20180627120817

Feng, T., & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: A systematic review. Gut Microbes, 12. https://doi.org/10.1080/19490976.2020.1801944

Fisher, N., & Meunier, B. (2008). Molecular basis of resistance to cytochrome bc1 inhibitors. FEMS Yeast Research, 8(2), 183–192. https://doi.org/10.1111/j.1567-1364.2007.00328.x

He, M., Liang, J., Shen, Y., Zhang, C., Yang, K., Liu, L., Xie, Q., Hu, C., Song, X., & Wang, Y. (2023). Coptisine inhibits influenza virus replication by upregulating p21. Molecules, 28, 5398. https://doi.org/10.3390/molecules28145398

Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2022). Cochrane handbook for systematic reviews of interventions (Version 6.3). Cochrane. http://www.training.cochrane.org/handbook

Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560. https://doi.org/10.1136/bmj.327.7414.557

Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560. https://doi.org/10.1136/bmj.327.7414.557

Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture. Annual Review of Entomology, 51, 45–66. https://doi.org/10.1146/annurev.ento.51.110104.151146

Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids. The Scientific World Journal, 2013, 162750. https://doi.org/10.1155/2013/162750

Lin, J., Qu, Z., Pu, H., Shen, L., Yi, X., Lin, Y., Gong, R., Chen, G., & Chen, S. (2023). In vitro and in vivo anti-cancer activity of lasiokaurin in a triple-negative breast cancer model. Molecules, 28, 7701. https://doi.org/10.3390/molecules28237701

McLaughlin, J. L. (2008). Paw paw and cancer: Annonaceous acetogenins from discovery to commercial products. Journal of Natural Products, 71(7), 1311–1321. https://doi.org/10.1021/np800191t

Meyer, B. N., et al. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(5), 31–34. https://doi.org/10.1055/s-2007-971236

Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., & Prajapati, J. (2015). Probiotics as potential antioxidants: A systematic review. Journal of Agricultural and Food Chemistry, 63, 3615–3626. https://doi.org/10.1021/jf506326t

Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629–661. https://doi.org/10.1021/acs.jnatprod.5b01055

Núñez-Montero, K., & Barrientos, L. (2018). Advances in antimicrobial drug discovery. Antibiotics, 7(3), 67. https://doi.org/10.3390/antibiotics7040090

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress. European Journal of Medicinal Chemistry, 97, 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040

Ralph, S. J., Rodríguez-Enríquez, S., Neuzil, J., Saavedra, E., & Moreno-Sánchez, R. (2010). The causes of cancer revisited. Molecular Aspects of Medicine, 31(2), 145–170. https://doi.org/10.1016/j.mam.2010.02.008

Ríos, J. L., & Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100(1–2), 80–84. https://doi.org/10.1016/j.jep.2005.04.025

Rodríguez-Cisneros, M., Morales-Ruíz, L., Salazar-Gómez, A., Rojas-Rojas, F., & Estrada-de los Santos, P. (2023). Compilation of the antimicrobial compounds produced by Burkholderia sensu stricto. Molecules, 28, 1646. https://doi.org/10.3390/molecules28041646

Sahoo, D. K., Wong, D., Patani, A., Paital, B., Yadav, V. K., Patel, A., & Jergens, A. E. (2024). Exploring the role of antioxidants in sepsis-associated oxidative stress: a comprehensive review. Frontiers in cellular and infection microbiology, 14, 1348713. https://doi.org/10.3389/fcimb.2024.1348713

Sarker, S. D., & Nahar, L. (2012). An introduction to natural products isolation. Methods in Molecular Biology, 864, 1–25. https://doi.org/10.1007/978-1-61779-624-1_1

Sen, T., Barrow, C. J., & Deshmukh, S. K. (2019). Microbial pigments in the food industry—Challenges and the way forward. Frontiers in Nutrition, 6, 7. https://doi.org/10.3389/fnut.2019.00007

Silver, L. L. (2011). Challenges of antibacterial discovery. Clinical Microbiology Reviews, 24(1), 71–109. https://doi.org/10.1128/CMR.00030-10

Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. (2017). Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech, 7, 1–14. https://doi.org/10.1007/s13205-016-0586-4

Strobel, G., & Daisy, B. (2003). Bioprospecting for microbial endophytes. Microbiology and Molecular Biology Reviews, 67(4), 491–502. https://doi.org/10.1128/MMBR.67.4.491-502.2003

Tang, T., Li, S., Pan, B., Xiao, J., Pang, Y., Xie, S., Zhou, Y., Yang, J., & Wei, Y. (2023). Identification of flavonoids from Scutellaria barbata D. Don as inhibitors of HIV-1 and cathepsin L proteases and their structure–activity relationships. Molecules, 28, 4476. https://doi.org/10.3390/molecules28114476

Tormo, J. R., et al. (2003). Acetogenins as inhibitors of mitochondrial complex I. Bioorganic & Medicinal Chemistry Letters, 13(23), 4101–4105. https://doi.org/10.1016/j.bmcl.2003.08.045

Wallace, D. C. (2012). Mitochondria and cancer. Nature Reviews Cancer, 12(10), 685–698. https://doi.org/10.1038/nrc3365

Xu, M., Huang, Z., Zhu, W., Liu, Y., Bai, X., & Zhang, H. (2023). Fusarium-derived secondary metabolites with antimicrobial effects. Molecules, 28, 3424. https://doi.org/10.3390/molecules28083424

Young, A. J., & Lowe, G. L. (2018). Carotenoids—Antioxidant properties. Antioxidants, 7, 28. https://doi.org/10.3390/antiox7020028

Yu, R., Li, X., Yi, P., Wen, P., Wang, S., Liao, C., Song, X., Wu, H., He, Z., & Li, C. (2023). Isolation and identification of chemical compounds from Agaricus blazei Murrill and their in vitro antifungal activities. Molecules, 28, 7321. https://doi.org/10.3390/molecules28217321

Zhang, L., & Demain, A. L. (2005). Natural products and drug discovery. Natural Product Reports, 22(3), 352–356. https://doi.org/10.1007/978-1-59259-976-9

Zhang, Q., Li, Y., Zhao, B., Xu, L., Ma, H., & Wang, M. (2022). Synthesis and antifungal activity of new butenolide containing methoxyacrylate scaffold. Molecules, 27(19), 6541. https://doi.org/10.3390/molecules27196541    

Zhao, J., Shan, T., Mou, Y., & Zhou, L. (2011). Plant-derived bioactive compounds produced by endophytic fungi. Mini-Reviews in Medicinal Chemistry, 11(2), 159–168. https://doi.org/10.2174/138955711794519492

Zhao, L., Xie, W., Du, Y., Xia, Y., Liu, K., Ku, C., Ou, Z., Wang, M., & Zhang, H. (2023). Isolation and anticancer progression evaluation of the chemical constituents from Bridelia balansae Tutcher. Molecules, 28, 6165. https://doi.org/10.3390/molecules28166165


Article metrics
View details
0
Downloads
0
Citations
17
Views

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
17
View
0
Share