Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Ancient DNA studies: Common limitations and Genotyping

Anastasia V. Poznyak 1*, Nikolay A. Orekhov 2, Tatiana Ivanovna Kovyanova 1,3, Irina Alexandrovna Starodubtseva 4, Natalia V. Elizova 2, Vasily N. Sukhorukov 3, Alexander N. Orekhov 3

+ Author Affiliations

Journal of Angiotherapy 8(6) 1-8 https://doi.org/10.25163/angiotherapy.869750

Submitted: 30 April 2024  Revised: 18 June 2024  Published: 23 June 2024 

Abstract

Ancient DNA (aDNA) studies have revolutionized research on human origins and genetic diversity, providing insights into evolutionary history and disease susceptibility. This review article explores common limitations and genotyping techniques in aDNA research. The Human Genome Project (HGP) laid the foundation for genomic studies, enabling the sequencing of millions of modern and prehistoric human genomes. Advancements in technology and bioinformatics have facilitated the analysis of aDNA, revealing interbreeding events and ancient genetic variants shaping modern traits and health conditions. Laboratory work with aDNA involves complex processes to extract and sequence degraded samples, often obtained from skeletal remains. Techniques such as hybridization capture and high-throughput sequencing enhance data quality and analysis efficiency. Post-mortem DNA damage, including fragmentations and nucleotide conversions, poses challenges in authenticating aDNA sequences. Strategies like uracil-DNA glycosylase treatment help mitigate damage and improve data reliability. Ancient DNA genotyping methods, such as pseudohaploid and probabilistic genotyping, cater to varying data quality levels and analysis requirements. Genotype accuracy, affected by low coverage and post-mortem damage, poses challenges in differentiating heterozygous and homozygous loci. Ethical considerations in aDNA research highlight the importance of respecting individual and cultural rights, preserving cultural heritage, and addressing social implications of genetic findings. Transparency, accountability, and collaboration with descendant communities are essential for conducting ethically sound aDNA research.

Keywords: Human Genome Project (HGP), Ancient DNA (aDNA), Genomic Sequencing, Bioinformatics, Ethical Considerations

References

Alpaslan-Roodenberg, S., Anthony, D., Babiker, H., Bánffy, E., Booth, T., Capone, P., Deshpande-Mukherjee, A., Eisenmann, S., Fehren-Schmitz, L., Frachetti, M., Fujita, R., Frieman, C. J., Fu, Q., Gibbon, V., Haak, W., Hajdinjak, M., Hofmann, K. P., Holguin, B., Inomata, T., Kanzawa-Kiriyama, H., … Zahir, M. (2021). Ethics of DNA research on human remains: five globally applicable guidelines. Nature, 599(7883), 41–46. https://doi.org/10.1038/s41586-021-04008-x

Ausmees, K., Sanchez-Quinto, F., Jakobsson, M., & Nettelblad, C. (2022). An empirical evaluation of genotype imputation of ancient DNA. G3 (Bethesda, Md.), 12(6), jkac089. https://doi.org/10.1093/g3journal/jkac089

Ávila-Arcos, M. C., de la Fuente Castro, C., Nieves-Colón, M. A., & Raghavan, M. (2022). Recommendations for Sustainable Ancient DNA Research in the Global South: Voices From a New Generation of Paleogenomicists. Frontiers in genetics, 13, 880170. https://doi.org/10.3389/fgene.2022.880170

Barlow, A., Hartmann, S., Gonzalez, J., Hofreiter, M., & Paijmans, J. L. A. (2020). Consensify: A Method for Generating Pseudohaploid Genome Sequences from Palaeogenomic Datasets with Reduced Error Rates. Genes, 11(1), 50. https://doi.org/10.3390/genes11010050

Birney E. (2021). The International Human Genome Project. Human molecular genetics, 30(R2), R161–R163. https://doi.org/10.1093/hmg/ddab198

Bonfigli, A., Cesare, P., Volpe, A. R., Colafarina, S., Forgione, A., Aloisi, M., Zarivi, O., & Poma, A. M. G. (2023). Estimation of DNA Degradation in Archaeological Human Remains. Genes, 14(6), 1238. https://doi.org/10.3390/genes14061238

Carpenter, M., Divvela, P., Pingoud, V., Bujnicki, J., & Bhagwat, A. S. (2006). Sequence-dependent enhancement of hydrolytic deamination of cytosines in DNA by the restriction enzyme PspGI. Nucleic acids research, 34(13), 3762–3770. https://doi.org/10.1093/nar/gkl545

Cheng, C., Fei, Z., & Xiao, P. (2023). Methods to improve the accuracy of next-generation sequencing. Frontiers in bioengineering and biotechnology, 11, 982111. https://doi.org/10.3389/fbioe.2023.982111

Childebayeva, A., & Zavala, E. I. (2023). Review: Computational analysis of human skeletal remains in ancient DNA and forensic genetics. iScience, 26(11), 108066. https://doi.org/10.1016/j.isci.2023.108066

Dabney, J., Meyer, M., & Pääbo, S. (2013). Ancient DNA damage. Cold Spring Harbor perspectives in biology, 5(7), a012567. https://doi.org/10.1101/cshperspect.a012567

Dalal, V., Pasupuleti, N., Chaubey, G., Rai, N., & Shinde, V. (2023). Advancements and Challenges in Ancient DNA Research: Bridging the Global North-South Divide. Genes, 14(2), 479. https://doi.org/10.3390/genes14020479

Dalal, V., Pasupuleti, N., Chaubey, G., Rai, N., & Shinde, V. (2023). Advancements and Challenges in Ancient DNA Research: Bridging the Global North-South Divide. Genes, 14(2), 479. https://doi.org/10.3390/genes14020479

Danielewski, M., Zuraszek, J., Zielinska, A., Herzig, K. H., Slomski, R., Walkowiak, J., & Wielgus, K. (2023). Methodological Changes in the Field of Paleogenetics. Genes, 14(1), 234. https://doi.org/10.3390/genes14010234

Das, A. K., Goswami, S., Lee, K., & Park, S. J. (2019). A hybrid and scalable error correction algorithm for indel and substitution errors of long reads. BMC genomics, 20(Suppl 11), 948. https://doi.org/10.1186/s12864-019-6286-9

Ebler, J., Haukness, M., Pesout, T., Marschall, T., & Paten, B. (2019). Haplotype-aware diplotyping from noisy long reads. Genome biology, 20(1), 116. https://doi.org/10.1186/s13059-019-1709-0

Etter, P. D., Bassham, S., Hohenlohe, P. A., Johnson, E. A., & Cresko, W. A. (2011). SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods in molecular biology (Clifton, N.J.), 772, 157–178. https://doi.org/10.1007/978-1-61779-228-1_9

Feng, Y., Wang, T., Yang, Y., You, J., He, K., Zhang, H., Wang, Q., Yang, M., Huang, J., Ren, Z., & Jin, X. (2023). Genetic features and phylogenetic relationship analyses of Guizhou Han population residing in Southwest China via 38 X-InDels. PeerJ, 11, e14964. https://doi.org/10.7717/peerj.14964

Flores Bueso, Y., Walker, S. P., & Tangney, M. (2020). Characterization of FFPE-induced bacterial DNA damage and development of a repair method. Biology methods & protocols, 5(1), bpaa015. https://doi.org/10.1093/biomethods/bpaa015

Garrido Marques, A., Rubinacci, S., Malaspinas, A. S., Delaneau, O., & Sousa da Mota, B. (2024). Assessing the impact of post-mortem damage and contamination on imputation performance in ancient DNA. Scientific reports, 14(1), 6227. https://doi.org/10.1038/s41598-024-56584-3

Gasc, C., Peyretaillade, E., & Peyret, P. (2016). Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic acids research, 44(10), 4504–4518. https://doi.org/10.1093/nar/gkw309

Gasc, C., Peyretaillade, E., & Peyret, P. (2016). Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic acids research, 44(10), 4504–4518. https://doi.org/10.1093/nar/gkw309

Gill, P., Benschop, C., Buckleton, J., Bleka, Ø., & Taylor, D. (2021). A Review of Probabilistic Genotyping Systems: EuroForMix, DNAStatistX and STRmix™. Genes, 12(10), 1559. https://doi.org/10.3390/genes12101559

Günther, T., & Nettelblad, C. (2019). The presence and impact of reference bias on population genomic studies of prehistoric human populations. PLoS genetics, 15(7), e1008302. https://doi.org/10.1371/journal.pgen.1008302

Harney, É., Cheronet, O., Fernandes, D. M., Sirak, K., Mah, M., Bernardos, R., Adamski, N., Broomandkhoshbacht, N., Callan, K., Lawson, A. M., Oppenheimer, J., Stewardson, K., Zalzala, F., Anders, A., Candilio, F., Constantinescu, M., Coppa, A., Ciobanu, I., Dani, J., Gallina, Z., … Pinhasi, R. (2021). A minimally destructive protocol for DNA extraction from ancient teeth. Genome research, 31(3), 472–483. https://doi.org/10.1101/gr.267534.120

Head, S. R., Komori, H. K., LaMere, S. A., Whisenant, T., Van Nieuwerburgh, F., Salomon, D. R., & Ordoukhanian, P. (2014). Library construction for next-generation sequencing: overviews and challenges. BioTechniques, 56(2), 61–passim. https://doi.org/10.2144/000114133

Homer, N., & Nelson, S. F. (2010). Improved variant discovery through local re-alignment of short-read next-generation sequencing data using SRMA. Genome biology, 11(10), R99. https://doi.org/10.1186/gb-2010-11-10-r99

Hood, L., & Rowen, L. (2013). The Human Genome Project: big science transforms biology and medicine. Genome medicine, 5(9), 79. https://doi.org/10.1186/gm483

Krassner, M. M., Kauffman, J., Sowa, A., Cialowicz, K., Walsh, S., Farrell, K., Crary, J. F., & McKenzie, A. T. (2023). Postmortem changes in brain cell structure: a review. Free neuropathology, 4, 4-10. https://doi.org/10.17879/freeneuropathology-2023-4790

Krokan, H. E., & Bjørås, M. (2013). Base excision repair. Cold Spring Harbor perspectives in biology, 5(4), a012583. https://doi.org/10.1101/cshperspect.a012583

Krokan, H. E., Drabløs, F., & Slupphaug, G. (2002). Uracil in DNA--occurrence, consequences and repair. Oncogene, 21(58), 8935–8948. https://doi.org/10.1038/sj.onc.1205996

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., … International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921. https://doi.org/10.1038/35057062

Lovo, E., Woodward, L., Larkins, S., Preston, R., & Baba, U. N. (2021). Indigenous knowledge around the ethics of human research from the Oceania region: A scoping literature review. Philosophy, ethics, and humanities in medicine : PEHM, 16(1), 12. https://doi.org/10.1186/s13010-021-00108-8

Magi, A., Benelli, M., Gozzini, A., Girolami, F., Torricelli, F., & Brandi, M. L. (2010). Bioinformatics for next generation sequencing data. Genes, 1(2), 294–307. https://doi.org/10.3390/genes1020294

Mandape, S. N., Budowle, B., Mittelman, K., & Mittelman, D. (2024). Dense single nucleotide polymorphism testing revolutionizes scope and degree of certainty for source attribution in forensic investigations. Croatian medical journal, 65(3), 249–260.

Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Roodenberg, S. A., Harney, E., Stewardson, K., Fernandes, D., Novak, M., Sirak, K., Gamba, C., Jones, E. R., Llamas, B., Dryomov, S., Pickrell, J., Arsuaga, J. L., de Castro, J. M., Carbonell, E., Gerritsen, F., … Reich, D. (2015). Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 528(7583), 499–503. https://doi.org/10.1038/nature16152

Metz, G. E., Serena, M. S., Piñeyro, P. E., Cheetham, S., & Giovambattista, G. (2023). Editorial: The role of genetics studies in the discovery of new viruses and in the analysis of pathogeny of viral infections. Frontiers in genetics, 14, 1240812. https://doi.org/10.3389/fgene.2023.1240812

Morozova, I., Flegontov, P., Mikheyev, A. S., Bruskin, S., Asgharian, H., Ponomarenko, P., Klyuchnikov, V., ArunKumar, G., Prokhortchouk, E., Gankin, Y., Rogaev, E., Nikolsky, Y., Baranova, A., Elhaik, E., & Tatarinova, T. V. (2016). Toward high-resolution population genomics using archaeological samples. DNA research : an international journal for rapid publication of reports on genes and genomes, 23(4), 295–310. https://doi.org/10.1093/dnares/dsw029

Oguchi, Y., Shintaku, H., & Uemura, S. (2020). Development of a sequencing system for spatial decoding of DNA barcode molecules at single-molecule resolution. Communications biology, 3(1), 788. https://doi.org/10.1038/s42003-020-01499-8

Oulas, A., Minadakis, G., Zachariou, M., Sokratous, K., Bourdakou, M. M., & Spyrou, G. M. (2019). Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches. Briefings in bioinformatics, 20(3), 806–824. https://doi.org/10.1093/bib/bbx151

Parks, M., Subramanian, S., Baroni, C., Salvatore, M. C., Zhang, G., Millar, C. D., & Lambert, D. M. (2015). Ancient population genomics and the study of evolution. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 370(1660), 20130381. https://doi.org/10.1098/rstb.2013.0381

Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Genschoreck, T., Webster, T., & Reich, D. (2012). Ancient admixture in human history. Genetics, 192(3), 1065–1093. https://doi.org/10.1534/genetics.112.145037

Pavan, S., Delvento, C., Ricciardi, L., Lotti, C., Ciani, E., & D'Agostino, N. (2020). Recommendations for Choosing the Genotyping Method and Best Practices for Quality Control in Crop Genome-Wide Association Studies. Frontiers in genetics, 11, 447. https://doi.org/10.3389/fgene.2020.00447

Peter B. M. (2022). A geometric relationship of F2, F3and F4-statistics with principal component analysis. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 377(1852), 20200413. https://doi.org/10.1098/rstb.2020.0413

Peyrégne, S., & Peter, B. M. (2020). AuthentiCT: a model of ancient DNA damage to estimate the proportion of present-day DNA contamination. Genome biology, 21(1), 246. https://doi.org/10.1186/s13059-020-02123-y

Pimenoff, V. N., Houldcroft, C. J., Rifkin, R. F., & Underdown, S. (2018). The Role of aDNA in Understanding the Coevolutionary Patterns of Human Sexually Transmitted Infections. Genes, 9(7), 317. https://doi.org/10.3390/genes9070317

Psonis, N., Vassou, D., & Kafetzopoulos, D. (2021). Testing a series of modifications on genomic library preparation methods for ancient or degraded DNA. Analytical biochemistry, 623, 114193. https://doi.org/10.1016/j.ab.2021.114193

Renaud, G., Slon, V., Duggan, A. T., & Kelso, J. (2015). Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome biology, 16, 224. https://doi.org/10.1186/s13059-015-0776-0

Rohland, N., Harney, E., Mallick, S., Nordenfelt, S., & Reich, D. (2015). Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 370(1660), 20130624. https://doi.org/10.1098/rstb.2013.0624

Roth, W. D., Yaylaci, S., Jaffe, K., & Richardson, L. (2020). Do genetic ancestry tests increase racial essentialism? Findings from a randomized controlled trial. PloS one, 15(1), e0227399. https://doi.org/10.1371/journal.pone.0227399

Sakaki Y. (2019). A Japanese history of the Human Genome Project. Proceedings of the Japan Academy. Series B, Physical and biological sciences, 95(8), 441–458. https://doi.org/10.2183/pjab.95.031

Sharko, F. S., Zhur, K. V., Trifonov, V. A., & Prokhortchouk, E. B. (2023). Distortion of Population Statistics due to the Use of Different Methodological Approaches to the Construction of Genomic DNA Libraries. Acta naturae, 15(1), 87–96. https://doi.org/10.32607/actanaturae.11898

Sousa da Mota, B., Rubinacci, S., Cruz Dávalos, D. I., G Amorim, C. E., Sikora, M., Johannsen, N. N., Szmyt, M. H., Wlodarczak, P., Szczepanek, A., Przybyla, M. M., Schroeder, H., Allentoft, M. E., Willerslev, E., Malaspinas, A. S., & Delaneau, O. (2023). Imputation of ancient human genomes. Nature communications, 14(1), 3660. https://doi.org/10.1038/s41467-023-39202-0

Stan, E., Muresan, C. O., Dumache, R., Ciocan, V., Ungureanu, S., Mihailescu, A., Daescu, E., Duda-Seiman, C., Menghiu, G., Hutanu, D., & Enache, A. (2024). From Jane Doe to Sofia: DNA Extraction Protocol from Bones and Teeth without Liquid Nitrogen for Identifying Skeletal Remains. International journal of molecular sciences, 25(10), 5114. https://doi.org/10.3390/ijms25105114

Wagner, J. K., Colwell, C., Claw, K. G., Stone, A. C., Bolnick, D. A., Hawks, J., Brothers, K. B., & Garrison, N. A. (2020). Fostering Responsible Research on Ancient DNA. American journal of human genetics, 107(2), 183–195. https://doi.org/10.1016/j.ajhg.2020.06.017

Weiß, C. L., Gansauge, M. T., Aximu-Petri, A., Meyer, M., & Burbano, H. A. (2020). Mining ancient microbiomes using selective enrichment of damaged DNA molecules. BMC genomics, 21(1), 432. https://doi.org/10.1186/s12864-020-06820-7

Wibowo, M. C., Yang, Z., Borry, M., Hübner, A., Huang, K. D., Tierney, B. T., Zimmerman, S., Barajas-Olmos, F., Contreras-Cubas, C., García-Ortiz, H., Martínez-Hernández, A., Luber, J. M., Kirstahler, P., Blohm, T., Smiley, F. E., Arnold, R., Ballal, S. A., Pamp, S. J., Russ, J., Maixner, F., … Kostic, A. D. (2021). Reconstruction of ancient microbial genomes from the human gut. Nature, 594(7862), 234–239. https://doi.org/10.1038/s41586-021-03532-0

Yousefi, S., Abbassi-Daloii, T., Kraaijenbrink, T., Vermaat, M., Mei, H., van 't Hof, P., van Iterson, M., Zhernakova, D. V., Claringbould, A., Franke, L., 't Hart, L. M., Slieker, R. C., van der Heijden, A., de Knijff, P., BIOS consortium, & 't Hoen, P. A. C. (2018). A SNP panel for identification of DNA and RNA specimens. BMC genomics, 19(1), 90. https://doi.org/10.1186/s12864-018-4482-7

Zhu, Y., Wang, L., Yin, Y., & Yang, E. (2017). Systematic analysis of gene expression patterns associated with postmortem interval in human tissues. Scientific reports, 7(1), 5435. https://doi.org/10.1038/s41598-017-05882-0

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



5
Save
0
Citation
495
View
0
Share