Amino Acids and Polyamines in Foliar Spraying in Enhancing Medicinal Plant Resilience to Abiotic Stress – A Systematic Review
Ismail M. A. M. Shahhat1*, Ahmad M. Abdel-Mageed1*, Salma Yousif Sidahmed Elsheikh1, Abdelrahman T. Abdelwahab1, Marwa A. Abdelfattah1, Sally A. Elsherbeny1, Ali M. Ali2
Journal of Angiotherapy 8(11) 1-15 https://doi.org/10.25163/angiotherapy.81110082
Submitted: 30 August 2024 Revised: 18 November 2024 Published: 19 November 2024
Abstract
Background: Salinity and drought are significant environmental stresses that adversely affect the growth, metabolic processes, and yield quality of medicinal plants. These stresses lead to a decrease in photosynthetic pigments, plant morphology alterations, and an increase in reactive oxygen species, all of which negatively impact metabolite synthesis. This review explores the potential of amino acids and polyamines, applied through foliar spraying, to mitigate the detrimental effects of these stresses and enhance plant resilience. Methods: This review synthesizes current research on the role of amino acids and polyamines in alleviating the negative impacts of salinity and drought on medicinal plants. It examines how these compounds, when applied foliar, contribute to improved photosynthetic activity, growth, and essential oil production. The effects of specific amino acids such as L-phenylalanine, arginine, L-tryptophan, and glutamine, along with polyamines like putrescine and gamma-aminobutyric acid (GABA), were reviewed in relation to plant responses to environmental stress. Results: The findings suggest that foliar application of amino acids and polyamines significantly enhances plant stress tolerance. Amino acids contribute to the synthesis of proteins and nitrogenous compounds, while polyamines like putrescine regulate gene expression and cell functions, promoting better growth under stress conditions. Treatments with L-phenylalanine and arginine improved the morphological characteristics and essential oil yield of Salvia officinalis, while L-tryptophan and glutamine treatments enhanced rosemary plant growth. Polyamines, particularly putrescine, increased chlorophyll content and plant weight under drought conditions, and GABA improved growth in Lavandula dentate under salinity stress. Conclusion: Foliar spraying of amino acids and polyamines offers a promising strategy for enhancing the resilience of medicinal plants to salinity and drought stresses. Tailored treatments can improve photosynthetic pigment accumulation, reduce nitrate-nitrogen accumulation, and enhance yield quality by preventing leaf disorders. The review highlights the need for further research, particularly in vivo studies, to better understand the mechanisms through which these compounds enhance plant stress tolerance and optimize their application for medicinal plant cultivation under abiotic stress conditions.Keywords: Amino acids, Polyamines, Foliar spraying, Drought stress, Salinity stress
References
Abd Elbar, O. H., Farag, R. E., & Shehata, S. A. (2019). Effect of putrescine application on some growth, biochemical and anatomical characteristics of Thymus vulgaris L. under drought stress. Annals of Agricultural Sciences, 64(2), 129-137.
Abdelkader, M., Voronina, L., Shelepova, O., Puchkov, M., Loktionova, E., Zhanbyrshina, N., ... & Ksenofontov, A. (2023). Monitoring Role of Exogenous Amino Acids on the Proteinogenic and Ionic Responses of Lettuce Plants under Salinity Stress Conditions. Horticulturae, 9(6), 626.
Aftab, T. (2019). A review of medicinal and aromatic plants and their secondary metabolites status under abiotic stress. Journal of Medicinal Plants, 7(3), 99-106.
Ahmed, A. M., El-Gohary, A. E., Osman, S. A., & Khalid, K. A. (2020). Arginine and salinity stress affect morphology and metabolism of Indian borage (Plectranthus amboinicus lour.). Acta Ecologica Sinica, 40(5), 417-424.
Akhmetollayeva, A. S., Zhumabek, A. T., Sutula, M. Y., Tussipkan, D., & Manabayeva, S. ?. (2024). DNA BARCODING ANALYSIS OF THE ASTERACEAE SPECIES FROM KAZAKHSTAN. Eurasian Journal of Applied Biotechnology, (3S).
Al-Fraihat, A. H., Al-Dalain, S. Y., Zatimeh, A. A., & Haddad, M. A. (2023). Enhancing Rosemary (Rosmarinus officinalis, L.) Growth and Volatile Oil Constituents Grown under Soil Salinity Stress by Some Amino Acids. Horticulturae, 9(2), 252.
Alnusaire, T. S., Al-Mushhin, A. A., & Soliman, M. H. (2022). Role of Ascorbic Acid in Alleviating Abiotic Stress in Crop Plants. In Antioxidant Defense in Plants: Molecular Basis of Regulation (pp. 259-283). Singapore: Springer Nature Singapore.
Assaf, M., Korkmaz, A., Karaman, S., & Kulak, M. (2022). Effect of plant growth regulators and salt stress on secondary metabolite composition in Lamiaceae species. South African Journal of Botany, 144, 480-493. https://doi.org/10.1016/j.sajb.2021.10.030
Awuchi, C. G., & Morya, S. (2023). Herbs of asteraceae family: nutritional profile, bioactive compounds, and potentials in therapeutics. Harvesting Food from Weeds, 21-78.
Babota, M., Frumuzachi, O., Nicolescu, A., Stojkovic, D., Sokovic, M., Rocchetti, G., & Vo?tinaru, O. (2023). Phenolic profile, in vitro antimicrobial and in vivo diuretic effects of endemic wild thyme Thymus comosus Heuff ex. Griseb.(Lamiaceae) from Romania. Frontiers in Pharmacology, 14, 1115117.
Bae, D. H., Lane, D. J., Jansson, P. J., & Richardson, D. R. (2018). The old and new biochemistry of polyamines. Biochimica et Biophysica Acta (BBA)-General Subjects, 1862(9), 2053-2068.
Balamurugan, V., Ragavendran, C., Nedumaran, T., Settu, R., Chinnasamy, K., Vasudevan, S., ... & Ansari, M. J. (2024). Drought stress enhances phytochemical, antioxidant, antidiabetic and anticancer properties in Pandanus tectorius. Biochemical Systematics and Ecology, 116, 104889.
Barrientos, N.; Vaquer-sunyer, R.; Gomis, D.; Marcos, M.; Jordà, B.; BarceLó-Llull, B.; PascuaL, A.; Ruiz-Parrado, I. (2021). «Salinidad». En: Vaquer-Sunyer, R.; Barrientos, N. (ed.). Informe Mar Balear 2021 . https:// doi.org/10.62135/ECDV8493
Bhaskar, R., Xavier, L. S. E., Udayakumaran, G., Kumar, D. S., Venkatesh, R., & Nagella, P. (2022). Biotic elicitors: A boon for the in-vitro production of plant secondary metabolites. Plant Cell, Tissue and Organ Culture (PCTOC), 149(1), 7-24.
Bistgani, Z. E., Barker, A. V., & Hashemi, M. (2024). Physiology of medicinal and aromatic plants under drought stress. The Crop Journal, 12, 2, 330.
Bistgani, Z. E., Barker, A. V., Hashemi M. (2023). Review on Physiological and Phytochemical Responses of Medicinal Plants to Salinity Stress. Communications in Soil Science and Plant Analysis, 54, 18,1-16.
Blázquez, M. A. (2024). Polyamines: their role in plant development and stress. Annual Review of Plant Biology, 75.
Chaudhary, S. B., Gujjar, D., Kumar, B., Patel, S. and Simran. (2024). Salinity Stress in Legume Crops: A Comprehensive Review of Effects, Mechanisms, and Mitigation Strategies. Journal of Scientific Research and Reports, 30, 7, 783-799.
Chen, D., Mubeen, B., Hasnain, A., Rizwan, M., Adrees, M., Naqvi, S. A. H., & Din, G. M. U. (2022). Role of promising secondary metabolites to confer resistance against environmental stresses in crop plants: Current scenario and future perspectives. Frontiers in plant science, 13, 881032.
Cui, J., Pottosin, I., Lamade, E., & Tcherkez, G. (2020). What is the role of putrescine accumulated under potassium deficiency?. Plant, Cell & Environment, 43(6), 1331-1347.
Danesh-Shahraki, H., Pirbalouti, A. G., Rajabzadeh, F., & Kachouei, M. A. (2023). Foliar application of salicylic acid and proline to mitigate water deficit impact on purple coneflower (Echinacea purpurea (L.) Moench.). Acta Scientiarum Polonorum Hortorum Cultus, 22(5), 89-97.
Das, G., Das, S., Talukdar, A. D., Venil, C. K., Bose, S., Banerjee, S., ... & Patra, J. K. (2023). Pharmacology and Ethnomedicinal Potential of Selected Plants Species from Apiaceae (Umbelliferae). Combinatorial chemistry & high throughput screening, 26(2), 256-288.
El-Gharbaoui, A., Benítez, G., González-Tejero, M. R., Molero-Mesa, J., & Merzouki, A. (2017). Comparison of Lamiaceae medicinal uses in eastern Morocco and eastern Andalusia and in Ibn al-Baytar's Compendium of Simple Medicaments (13th century CE). Journal of ethnopharmacology, 202, 208-224.
Goel, M.K., Mehrotra, S. & Kukreja, A.K. (2011). Elicitor-Induced Cellular and Molecular Events Are Responsible for Productivity Enhancement in Hairy Root Cultures: An Insight Study. Appl Biochem Biotechnol 165, 1342–1355. https://doi.org/10.1007/s12010-011-9351-7
Gupta, A., Gupta, K.K., Gupta, S.K., Mishra, P.K. (2023). Transcriptional Regulation in Biosynthesis of Phytochemicals in Medicinal Plants Under Stress Conditions. In: Singh, D., Mishra, A.K., Srivastava, A.K. (eds) Stress-responsive Factors and Molecular Farming in Medicinal Plants . Springer, Singapore, 123-140. https://doi.org/10.1007/978-981-99-4480-4_8
Haider, M. Z., Ashraf, M. A., Rasheed, R., Hussain, I., Riaz, M., Qureshi, F. F., ... & Hafeez, A. (2023). Impact of salinity stress on medicinal plants. In Medicinal plants: their response to abiotic stress (pp. 199-239). Singapore: Springer Nature Singapore.
Hamed, A. N., Attia, E., & Desoukey, S. Y. (2021). A review on various classes of secondary metabolites and biological activities of Lamiaceae (Labiatae) (2002-2018). Journal of advanced Biomedical and Pharmaceutical Sciences, 4(1), 16-31.
Hasanabadi, S., Ardakani, M. R., Pirbalouti, A. G., Paknejad, F., & Habibi, D. (2024). Organic inputs and L-phenylalanine amino acid impacts on yield and essential oil compounds of sage (Salvia officinalis L.) under different soil moisture conditions.
Ingrisano, R., Tosato, E., Trost, P., Gurrieri, L., & Sparla, F. (2023). Proline, cysteine and branched-chain amino acids in abiotic stress response of land plants and microalgae. Plants, 12(19), 3410.
Isah, T., Umar, S., Mujib, A. et al. (2018). Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tiss Organ Cult 132, 239–265. https://doi.org/10.1007/s11240-017-1332-2
Isnaini, N., Annisa, A., Prajaputra, V., Maryam, S., Idroes, R., & Khairan, K. (2024, June). Chemical composition and biological activities of essential oils in the family Lamiaceae. In IOP Conference Series: Earth and Environmental Science (Vol. 1356, No. 1, p. 012097). IOP Publishing. DOI 10.1088/1755-1315/1356/1/012097
Jampílek, J., & Králová, K. (2023). Impact of Abiotic Stresses on Production of Secondary Metabolites in Medicinal and Aromatic Plants. In: Aftab, T. (eds) New Frontiers in Plant-Environment Interactions: Environmental Science and Engineering. Springer, Cham. Nature Switzerland (pp. 169-252) https://doi.org/10.1007/978-3-031-43729-8_
Jamwal, K., Bhattacharya, S., Puri, S. (2018). Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J. Appl. Res. Med. Aromat. Plants. 9, 26–38. doi: 10.1016/j.jarmap.2017.12.003
Kabiri, R., Naghizadeh, M., & Zarea, M. J. (2021). Arginine induced photosynthetic adaptability of ajwain (Trachyspermum ammi) under osmotic stress. Journal of Ethno-Pharmaceutical Products, 2(1), 9-16.
Kawade, K., Tabeta, H., Ferjani, A., & Hirai, M. Y. (2023). The roles of functional amino acids in plant growth and development. Plant and Cell Physiology, 64(12), 1482-1493.
Khalid, M. F., Zakir, I., Khan, R. I., Irum, S., Sabir, S., Zafar, N., ... & Hussain, S. (2023). Effect of water stress (drought and waterlogging) on medicinal plants. In Medicinal Plants: Their Response to Abiotic Stress (pp. 169-182). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5611-9_6
Khan, N., Ali, S., Zandi, P., Mehmood, A., Ullah, S., Ikram, M., ... & Babar, M. A. (2020). Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pak. J. Bot, 52(2), 355-363.
Kumar, K., Debnath, P., Singh, S., & Kumar, N. (2023a). An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses, 3(3), 570-585.
Kumar, M., Bharadwaj, H., & Kumari, K. (2023b). Plant Adaptation to Salinity Stress: Significance of Major Metabolites: In. Making Plant Life Easier and Productive Under Salinity - Updates and Prospects. Edited by Naser A. Anjum, Asim Masood, Palaniswamy Thangavel, Nafees A. Khan. DOI: 10.5772/intechopen.106124.
Kurkin, V. A. , Pravdivtseva, O. E. , Zaitseva, E. N. , Dubishchev, A. V. , Tsibina, A. S. , Kurkina, A. V. , Pervushkin, S. V. , Zhdanova, A. V. (2023). Terpenoids and phenolic compounds as biologically active compounds of medicinal plants with diuretic action. Pharmacy and pharmacology. 11, 6, 446.
Kwaslema, D. R., & Michael, P. S. (2024). Meta-analysis of nanomaterials and plants interaction under salinity stress. Physiologia Plantarum, 176(4), e14445.
Lamsaadi, N., Farssi, O., El Moukhtari, A., & Farissi, M. (2024). Different approaches to improve the tolerance of aromatic and medicinal plants to salt stressed conditions. Journal of Applied Research on Medicinal and Aromatic Plants, 39, 100532.
LaPelusa A, Kaushik R., (2022). StatPearls Publishing; Treasure Island (FL): Nov 14,. Physiology, Proteins.
Lenis, Y. Y., Elmetwally, M. A., Maldonado-Estrada, J. G., & Bazer, F. W. (2017). Physiological importance of polyamines. Zygote, 25(3), 244-255.
Lerner, H. R. (2018). Plant Responses to Environmental Stresses: From Phytohormones to Genome Reorganization: From Phytohormones to Genome Reorganization. Routledge.
Liao, Z., Zhang, Y., Yu, Q., Fang, W., Chen, M., Li, T., ... & Luo, L. (2023). Coordination of growth and drought responses by GA-ABA signaling in rice. New Phytologist, 240(3), 1149-1161.
Majeed, A., Muhammad, Z. (2019). Salinity: A Major Agricultural Problem—Causes, Impacts on Crop Productivity and Management Strategies. In: Hasanuzzaman, M., Hakeem, K., Nahar, K., Alharby, H. (eds) Plant Abiotic Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_3
Marzouk M.M., Hussein S.R., Elkhateeb A., El-shabrawy M., Abdel-Hameed E.S., Kawashty S.A. (2018). Comparative study of Mentha species growing wild in Egypt: LC-ESI-S analysis and chemosystematic significance. Journal of Applied Pharmaceutical Science., 8(08):116-22.
Merlo, M., Giuliani, M., Du, Y., Pechlivanidis, I., & Castelletti, A. (2023, May). A pan-European analysis of drought events and impacts. In EGU General Assembly Conference Abstracts (pp. EGU-12961).
Milon, M. A. A., lutfa Khatun, M., & Islam, M. A. (2020). Polyamines-A Positive Modulator against Biotic and Abiotic Stresses on Plants: Review of Current Knowledge.
Misra, V., & Mall, A. K. (2024). Halotolerance plant growth-promoting rhizobacteria for improving productivity and remediation of saline soils. In Microbiome-Assisted Bioremediation (pp. 453-463). Academic Press.
Mouffouk, S., Mouffouk, C., Mouffouk, S., Mekki, A. H., Messaoud, A. M., & Haba, H. (2023). Anti-inflammatory, antibacterial and antioxidant activities of the medicinal species Atractylis cancellata. Journal of Biological Research-Bollettino della Società Italiana di Biologia Sperimentale, 96,1,11096
Muhammadiyeva, D. (2024). Medicinal Plants–Sources Of Biologically Active Substances. Journal of Management and Economics, 4(05), 19-21.
Nazari, M., Ghasemi-Soloklui, A. A., Kordrostami, M., & Latef, A. A. H. A. (2023). Deciphering the response of medicinal plants to abiotic stressors: A focus on drought and salinity. Plant Stress, 10, 100255.
Nicolas-Espinosa, J., Garcia-Ibañez, P., Lopez-Zaplana, A., Yepes-Molina, L., Albaladejo-Marico, L., & Carvajal, M. (2023). Confronting secondary metabolites with water uptake and transport in plants under abiotic stress. International Journal of Molecular Sciences, 24(3), 2826.
Nieto, G. (2017). Biological activities of three essential oils of the Lamiaceae family. Medicines, 4 (3), 63.
Omokhefe Bruce, S. (2022). Secondary metabolites from natural products. Secondary metabolites-trends and reviews. IntechOpen, 310. DOI: 10.5772/intechopen.102222
Othata P. & Pochai N. (2019). A one-dimensional mathematical simulation to salinity control in a river with a barrage dam using an unconditionally stable explicit finite difference method. Advances in Difference Equations (SpringerOpen), 2019, 1, pp 1-12.
Panda, S. K., da Silva, L. C. N., Sahal, D., & Leonti, M. (2019). Ethnopharmacological studies for the development of drugs with special reference to Asteraceae. Frontiers in Pharmacology, 10, 955.
Pérez-Llorca, M., Pollmann, S., & Müller, M. (2023). Ethylene and jasmonates signaling network mediating secondary metabolites under abiotic stress. International journal of molecular sciences, 24(6), 5990.
Rahman, S., Iqbal, M., & Husen, A. (2023). Medicinal plants and abiotic stress: an overview. In: Husen, A., Iqbal, M. (eds). Medicinal Plants: Their Response to Abiotic Stress, Springer, Singapore. 1-34. https://doi.org/10.1007/978-981-19-5611-9_1
Rai, A.K., Basak, N., Sundha, P., Patel, S., Kumar, S., Bedwal, S., Kajal, Yadav, R. K. & Sharma P. C. (2024). Physical and Chemical Characteristics of Salt-Affected Soils in India. In: Singh, R.K., Prakash, M., Gautam, R.K., Krishnamurthy, S.L., Thirumeni, S. (eds) Genetic Improvement of Rice for Salt Tolerance. Springer, Singapore, 189-205. https://doi.org/10.1007/978-981-99-3830-8_11
Ray, A., Kundu, S., Mohapatra, S. S., Sinha, S., Khoshru, B., Keswani, C., & Mitra, D. (2024). An Insight into the Role of Phenolics in Abiotic Stress Tolerance in Plants: Current Perspective for Sustainable Environment. Journal of Pure & Applied Microbiology, 18(1), 9- 24.
Reshi ZA, Ahmad W, Lukatkin AS, Javed SB. From Nature to Lab (2023). A Review of Secondary Metabolite Biosynthetic Pathways, Environmental Influences, and In Vitro Approaches. Metabolites. 13 (8):895. doi: 10.3390/metabo13080895. PMID: 37623839; PMCID: PMC10456650.
Roy, T., Pal, N., & Das, N. (2024). Regulation of the polyamine pool in plants: metabolic implications and stress mitigation, with emphasis on microbial influence. Physiological and Molecular Plant Pathology, 102317.
Salehi, B., Venditti, A., Frezza, C., Yücetepe, A., Altuntas, Ü., Uluata, S., ... & Sharifi-Rad, J. (2019). Apium plants: Beyond simple food and phytopharmacological applications. Applied Sciences, 9(17), 3547.
Salehi-Lisar, S.Y., Bakhshayeshan-Agdam, H. (2016). Drought Stress in Plants: Causes, Consequences, and Tolerance. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham, 1-16. https://doi.org/10.1007/978-3-319-28899-4_1
Sanchez S., Demain A. L. (2011). Secondary metabolites. In: Comprehensive Biotechnology 3rd Edition. Elsevier, Amsterdam.DOI: 10.1016/B978-0-08-088504-9.00018-0.
Shala, A. Y., Aboukamar, A. N., & Gururani, M. A. (2024). Exogenous Application of Gamma Aminobutyric Acid Improves the Morpho-Physiological and Biochemical Attributes in Lavandula dentata L. under Salinity Stress. Horticulturae, 10(4), 410.
Shil, S., & Dewanjee, S. (2022). Impact of drought stress signals on growth and secondary metabolites (SMs) in medicinal plants. J Phytopharmacol, 11(5), 371-6.
Singh, A. (2024). A Review on Traditional uses, Bioactive Chemical Constituents, Pharmacology, and Toxicity of Tinospora cordifolia (Guduchi or Giloy). Research Journal of Pharmacognosy and Phytochemistry, 16(2), 107-111.
Song, J., Yang, J., & Jeong, B. R. (2024). Synergistic Effects of Silicon and Aspartic Acid on the Alleviation of Salt Stress in Celery (Apium graveliens L.)“Si Ji Xiao Xiang Qin”. Plants, 13(15), 2072.
SONG, Q. C., CAO, F. Q., GONG, Y. Y., CHENG, X. Y., BI, X. Y., & LIU, L. H. (2012). Current research progresses of amino acids uptake, transport and their biological roles in higher plants. Journal of Plant Nutrition and Fertilizers, 18(6), 1511-1521.
Soni, S., Jha, A. B., Dubey, R. S., & Sharma, P. (2024). Nanowonders in agriculture: Unveiling the potential of nanoparticles to boost crop resilience to salinity stress. Science of the Total Environment, 925, 171433.
Soroori, S., Danaee, E., Hemmati, K., & Moghadam, A. L. (2021). Effect of foliar application of proline on morphological and physiological traits of Calendula officinalis L. under drought stress.
Sun, Wenli, Mohamad Hesam Shahrajabian, Yue Kuang, and Na Wang. "Amino acids biostimulants and protein hydrolysates in agricultural sciences." Plants 13, no. 2 (2024): 210.
Tadele, K. T., & Zerssa, G. W. (2023). Biostimulants and phytohormones improve productivity and quality of medicinal plants under abiotic stress. In Medicinal Plants: Their Response to Abiotic Stress (pp. 335-362). Singapore: Springer Nature Singapore.
Takahashi, T., & Kakehi, J. I. (2010). Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Annals of botany, 105(1), 1-6.
Tan, U., & Gören, H. K. (2024). Comprehensive evaluation of drought stress on medicinal plants: a meta-analysis. PeerJ, 12, e17801.
Tran, D. Q., Pham, A. C., Nguyen, T. T. T., Vo, T. C., Vu, H. D., Ho, G. T., & Mohsin, S. M. (2024). Growth, Physiological, and Biochemical Responses of a Medicinal Plant Launaea sarmentosa to Salinity. Horticulturae, 10(4), 388.
Ulewicz-Magulska, B., & Wesolowski, M. (2023). Antioxidant Activity of Medicinal Herbs and Spices from Plants of the Lamiaceae, Apiaceae and Asteraceae Families: Chemometric Interpretation of the Data. Antioxidants, 12(12), 2039.
Walia, S.S., Kaur, K., Kaur, T. (2024). Drought, Its Different Types and Drought Management Strategies. In: Rainfed Agriculture and Watershed Management. Springer, Singapore, p.p. 17-26. https://doi.org/10.1007/978-981-99-8425-1_4
Wen, Y., Liao, Y., Tang, Y., Zhang, H., Zhang, J., & Liao, Z. (2023). Metabolic Effects of Elicitors on the Biosynthesis of Tropane Alkaloids in Medicinal Plants. Plants, 12(17), 3050.
Xu, Z., Chang, L. (2017). Apiaceae or Umbelliferae. In: Identification and Control of Common Weeds: Volume 3. Springer, Singapore p.p 3-49. https://doi.org/10.1007/978-981-10-5403-7_1
Yeshi, K., Crayn, D., Ritmejeryte, E., & Wangchuk, P. (2022). Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules, 27(1), 313.
Yuan, Y., Song, L., Li, M., Liu, G., Chu, Y., Ma, L., ... & Huang, L. (2012). Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb. BMC genomics, 13, 1-17.
View Dimensions
View Altmetric
Save
Citation
View
Share