Agriculture and food sciences | Online ISSN: 3066-3407
REVIEWS   (Open Access)

Physio-Morphological Mechanisms for Adapting Crops to a Warming World and Breeding for Heat and Drought Tolerance

Asad ullah Zubair1, Hammad Ahmad2, Muhammad Anas Bin Abdul Qadeer1, Farrukh Shehzad3, Muhammad Sameer1, Mujahid Huzaifa1, Bazgha Maryam1, Minahil Iqbal2, Mauwiz Aziz1, Maria Javed1, Muhammad Haider Ali1, Muhammad Sajad1*

+ Author Affiliations

Applied Agriculture Sciences 3 (1) 1-8 https://doi.org/10.25163/agriculture.3110354

Submitted: 08 September 2025 Revised: 11 November 2025  Accepted: 16 November 2025  Published: 18 November 2025 


Abstract

Climate change has heightened the frequency of drought and heat stress, presenting significant risks to global agriculture and food security. These abiotic stresses impair plant water relations, nutrient uptake, photosynthesis and reproductive development leading to yield instability across major crops. This review synthesizes recent advances in understanding morphological, physiological and molecular mechanisms underpinning tolerance to these stresses. Morphological traits such as leaf rolling, wax deposition, canopy adjustments, root architecture and hydraulic regulation contribute to maintaining water-use efficiency and thermal stability. Physiological mechanisms, including photosystem II protection, non-photochemical quenching, osmotic adjustment, antioxidant defense and Rubisco activase activity safeguard carbon assimilation under stress. At the molecular level, CRISPR/Cas-mediated editing of regulatory genes (e.g., ARGOS8, OsPYL9, TaDREB2) coupled with genomic selection and speed breeding has accelerated the development of stress-resilient varieties. Case studies in maize, rice, wheat and sorghum highlight progress in delivering climate-smart cultivars, including genome-edited rice (DRR Dhan 100, Pusa DST Rice 1) and advanced CIMMYT wheat lines with improved canopy temperature depression. Complementary innovations including digital agriculture, UAV-based high-throughput phenotyping, machine learning for stress prediction and microbiome-based biostimulants further strengthen resilience strategies. Despite these advances, research gaps remain in multi-stress field testing, exploitation of landraces & wild relatives and long-term socio-economic impact assessments. Future agricultural resilience will depend on integrating molecular breeding, digital decision-support tools and sustainable management practices. Such multidisciplinary approaches can secure global food systems by fostering crops capable of thriving under increasingly hot and water-limited environments.

Keywords: Climate change, Drought stress, Heat stress, Morpho-physiological traits, CRISPR/Cas genome editing, UAV-based monitoring, Food security

References

Anjum, N. A., Thangavel, P., Rasheed, F., Masood, A., Pirasteh-Anosheh, H., & Khan, N. A. (2023). Osmolytes: Efficient Oxidative Stress-Busters in Plants. In M. W. Ansari, A. K. Singh, & N. Tuteja (Eds.), Global Climate Change and Plant Stress Management (1st ed., pp. 399–409). Wiley. https://doi.org/10.1002/9781119858553.ch27

Carillo, P. (2025). Can biostimulants enhance plant resilience to heat and water stress in the Mediterranean hotspot? Plant Stress, 16, 100802. https://doi.org/10.1016/j.stress.2025.100802

Chen, B., Zhong, D., & Monteiro, A. (2006). Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics, 7(1), 156. https://doi.org/10.1186/1471-2164-7-156

Joshi, S., Nath, J., Singh, A. K., Pareek, A., & Joshi, R. (2022). Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiologia Plantarum, 174(3), e13702. https://doi.org/10.1111/ppl.13702

Kumar, P., Paul, D., Jhajhriya, S., Kumar, R., Dutta, S., Siwach, P., & Das, S. (2024). Understanding heat-shock proteins’ abundance and pivotal function under multiple abiotic stresses. Journal of Plant Biochemistry and Biotechnology, 33(4), 492–513. https://doi.org/10.1007/s13562-024-00932-x

Lubkowska, A., Dudzinska, W., & Pluta, W. (2023). Antioxidant enzyme activity and serum HSP70 concentrations in relation to insulin resistance and lipid profile in lean and overweight young men. Antioxidants, 12(3), 655.

Mishra, N., Jiang, C., Chen, L., Paul, A., Chatterjee, A., & Shen, G. (2023). Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Frontiers in Plant Science, 14, 1110622. https://doi.org/10.3389/fpls.2023.1110622

Ray, A., & Dalal, V. K. (2025). Proteomics Response of Photosynthetic Machinery to Abiotic Stresses: A Review. Current Proteomics, 22. https://doi.org/10.2174/0115701646347647241211211906

Rudenko, N. N., Vetoshkina, D. V., Marenkova, T. V., & Borisova-Mubarakshina, M. M. (2023). Antioxidants of non-enzymatic nature: Their function in higher plant cells and the ways of boosting their biosynthesis. Antioxidants, 12(11), 2014.

Sachdev, S., Ansari, S. A., & Ansari, M. I. (2023). Role of Osmolytes in Alleviation of Oxidative Stress. In S. Sachdev, S. A. Ansari, & M. I. Ansari, Reactive Oxygen Species in Plants (pp. 173–202). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9884-3_10

Afzal, M., Hindawi, S. E. S., Alghamdi, S. S., Migdadi, H. H., Khan, M. A., Hasnain, M. U.,…Sohaib, M. (2023). Potential breeding strategies for improving salt tolerance in crop plants. Journal of Plant Growth Regulation, 42(6), 3365-3387.

Ali, A., Ullah, Z., Sher, H., Abbas, Z., & Rasheed, A. (2023). Water stress effects on stay green and chlorophyll fluorescence with focus on yield characteristics of diverse bread wheats. Planta, 257(6), 104. https://doi.org/10.1007/s00425-023-04140-0

Allendorf, F. W., Ryman, N., & Waples, R. S. (2023). In Memoriam: Fred M. Utter, a founder of fisheries genetics. Journal of Heredity, 114(5), 580–584. https://doi.org/10.1093/jhered/esad028

Al-Najadi, R., Al-Mulla, Y., Al-Abri, I., & Al-Sadi, A. M. (2025). Effectiveness of drone-based thermal sensors in optimizing controlled environment agriculture performance under arid conditions. Scientific Reports, 15(1), 9042. https://doi.org/10.1038/s41598-025-94432-0

Anser, M. K., Yousaf, S. U., Usman, B., Azam, K., Bandar, N. F. A., Jambari, H.,…Zaman, K. Sustainable Futures.

Aranda, I., Rodriguez-Calcerrada, J., Robson, T. M., Cano, J., Alte, L., & Sanchez-Gomez, D. (2012). Stomatal and non-stomatal limitations on leaf carbon assimilation in beech (Fagus sylvatica L.) seedlings under natural conditions. Forest Systems, 21(3), 405-417.

Araus, J., Slafer, G., Reynolds, M., & Royo, C. (2002). Plant breeding and drought in C3 cereals: what should we breed for? Annals of botany, 89(7), 925-940.

Arinarayanasamy, T. I., Premnath, A., Balakrishnan, N., Jeyaprakash, P., Manickam, S., Chockalingam, V., & Muthurajan, R. (2025). Climate resilient millets: Emerging paradigms for the rising paradox. Genetic Resources and Crop Evolution, 72(4), 3875–3917. https://doi.org/10.1007/s10722-024-02190-1

Ashraf, M. (2010). Inducing drought tolerance in plants: recent advances. Biotechnology advances, 28(1), 169-183.

Bakala, H. S., Devi, J., Singh, G., & Singh, I. (2024). Drought and heat stress: insights into tolerance mechanisms and breeding strategies for pigeonpea improvement. Planta, 259(5), 123.

Baramati, P., Pradhan, A., Rane, J., & Pathak, H. Alternative Crops for Augmenting Farmers’ Income in Abiotic Stress Regions.

Begna, T. (2022). Importance of participatory variety selection and participatory plant breeding in variety development and adoption. Advances in Crop Science and Technology, 10(2), 2-7.

Bhalani, H., Thankappan, R., Mishra, G. P., Sarkar, T., Bosamia, T. C., & Dobaria, J. R. (2019). Regulation of antioxidant mechanisms by AtDREB1A improves soil-moisture deficit stress tolerance in transgenic peanut (Arachis hypogaea L.). PloS one, 14(5), e0216706.

Bhardwaj, A., Kaur, S., Padhiar, D., & Nayyar, H. (2024a). Phenotyping for heat tolerance in food crops. Plant Physiology Reports, 29(4), 736–748. https://doi.org/10.1007/s40502-024-00833-0

Bhardwaj, A., Kaur, S., Padhiar, D., & Nayyar, H. (2024b). Phenotyping for heat tolerance in food crops. Plant Physiology Reports, 29(4), 736–748. https://doi.org/10.1007/s40502-024-00833-0

Bi, H. (2016). Characterization of wheat cuticle and wheat cuticle-related transcription factor genes in relation to drought The University of Adelaide].

Bita, C. E., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.

Blum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4-10.

Bureau, D. (2025, May 5). DRR Dhan 100 (Kamla): India’s First Genome-Edited High-Yielding Paddy Variety. Global Agriculture. https://www.global-agriculture.com/seed-industry/drr-dhan-100-kamla-indias-first-genome-edited-high-yielding-paddy-variety/

Change, I. P. O. C. (2007). Climate change 2007: the physical science basis. Agenda, 6(07), 333.

Chavhan, R. L., Jaybhaye, S. G., Hinge, V. R., Deshmukh, A. S., Shaikh, U. S., Jadhav, P. K., Kadam, U. S., & Hong, J. C. (2025). Emerging applications of gene editing technologies for the development of climate-resilient crops. Frontiers in Genome Editing, 7, 1524767. https://doi.org/10.3389/fgeed.2025.1524767

Chen, G., Li, Y., Jin, K., Gao, J., Wu, S., Cui, X., Mao, C., Yin, X., Lu, T., & Zhang, Z. (2024). Synthetic photorespiratory bypass improves rice productivity by enhancing photosynthesis and nitrogen uptake. The Plant Cell, 37(1), koaf015. https://doi.org/10.1093/plcell/koaf015

Chen, R., Lu, H., Wang, Y., Tian, Q., Zhou, C., Wang, A., Feng, Q., Gong, S., Zhao, Q., & Han, B. (2024). High-throughput UAV-based rice panicle detection and genetic mapping of heading-date-related traits. Frontiers in Plant Science, 15, 1327507. https://doi.org/10.3389/fpls.2024.1327507

Chukwudi, U. P., Babalola, O. O., Glick, B. R., Santoyo, G., & Rigobelo, E. C. (2025). Field application of beneficial microbes to ameliorate drought stress in maize. Plant and Soil. https://doi.org/10.1007/s11104-025-07446-y

Cobb, J. N., DeClerck, G., Greenberg, A., Clark, R., & McCouch, S. (2013). Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics, 126, 867-887.

Comas, L. H., Becker, S. R., Cruz, V. M. V., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4, 442.

Correia, P. M., Cairo Westergaard, J., Bernardes da Silva, A., Roitsch, T., Carmo-Silva, E., & Marques da Silva, J. (2022). High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress. Journal of Experimental Botany, 73(15), 5235–5251.

Cvejic, S., Jocic, S., Mitrovic, B., Bekavac, G., Mirosavljevic, M., Jeromela, A. M.,…Miladinovic, D. (2022). Innovative approaches in the breeding of climate-resilient crops. Climate Change and Agriculture: Perspectives, Sustainability and Resilience, 111-156.

Digrado, A., Ainsworth, E. A., & Change, G. (2023a). Modifying canopy architecture to optimize photosynthesis in crops. In Understanding and improving crop photosynthesis (pp. 159–200). Burleigh Dodds Science Publishing Cambridge. https://api.taylorfrancis.com/content/chapters/edit/download?identifierName=doi&identifierValue=10.19103/AS.2022.0119.11&type=chapterpdf

Digrado, A., Ainsworth, E. A., & Change, G. (2023b). Modifying canopy architecture to optimize photosynthesis in crops. In Understanding and improving crop photosynthesis (pp. 159–200). Burleigh Dodds Science Publishing Cambridge. https://api.taylorfrancis.com/content/chapters/edit/download?identifierName=doi&identifierValue=10.19103/AS.2022.0119.11&type=chapterpdf

Duque, A. S., de Almeida, A. M., da Silva, A. B., da Silva, J. M., Farinha, A. P., Santos, D.,…de Sousa Araújo, S. (2013). Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. In Abiotic stress-plant responses and applications in agriculture. IntechOpen.

Dwivedi, M. (2023). Phytochemical Characterisation of Taverniera cuneifolia (Roth) Arn [PhD Thesis, Maharaja Sayajirao University of Baroda (India)]. https://search.proquest.com/openview/f136304b2797e1f077d4db03b071c42b/1?pq-origsite=gscholar&cbl=2026366&diss=y

Ecophysiology. (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Ecophysiology&oldid=1305227718

Fábián, A., Sáfrán, E., Szabó-Eitel, G., Barnabás, B., & Jäger, K. (2019). Stigma functionality and fertility are reduced by heat and drought co-stress in wheat. Frontiers in Plant Science, 10, 244.

Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A.,…Saud, S. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 8, 1147.

Farooq, M., Rehman, A., Wahid, A., & Siddique, K. H. (2018). Photosynthesis under heat stress. In Handbook of photosynthesis (pp. 697-701). CRC Press.

Francesconi, S., Harfouche, A., Maesano, M., & Balestra, G. M. (2021). UAV-Based Thermal, RGB Imaging and Gene Expression Analysis Allowed Detection of Fusarium Head Blight and Gave New Insights Into the Physiological Responses to the Disease in Durum Wheat. Frontiers in Plant Science, 12, 628575. https://doi.org/10.3389/fpls.2021.628575

Franzoni, G., Cocetta, G., Prinsi, B., Ferrante, A., & Espen, L. (2022). Biostimulants on crops: Their impact under abiotic stress conditions. Horticulturae, 8(3), 189.

Gao, Y., Zhao, T., Zheng, Z., & Liu, D. (2025). Cotton leaf water potential prediction based on UAV visible light images and multi-source data. Irrigation Science, 43(1), 121-134.

Gardezi, M., Adereti, D. T., Stock, R., & Ogunyiola, A. (2022). In pursuit of responsible innovation for precision agriculture technologies. Journal of Responsible Innovation, 9(2), 224-247.

Hafeez, A., Ali, S., Javed, M. A., Iqbal, R., Khan, M. N., Çig, F., Sabagh, A. E., Abujamel, T., Harakeh, S., Ercisli, S., & Ali, B. (2024). Breeding for water-use efficiency in wheat: Progress, challenges and prospects. Molecular Biology Reports, 51(1), 429. https://doi.org/10.1007/s11033-024-09345-4

Hajihashemi, S., Noedoost, F., Geuns, J. M., Djalovic, I., & Siddique, K. H. (2018). Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana. Frontiers in Plant Science, 9, 1430.

Hall, A. E. (2018). Crop responses to environment: Adapting to global climate change. CRC Press.

Hasanuzzaman, M., Hossain, M. A., da Silva, J. A. T., & Fujita, M. (2012). Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. Crop stress and its management: perspectives and strategies, 261-315.

Hori, K., Suzuki, K., Ishikawa, H., Nonoue, Y., Nagata, K., Fukuoka, S., & Tanaka, J. (2021). Genomic regions involved in differences in eating and cooking quality other than Wx and Alk genes between indica and japonica rice cultivars. Rice, 14, 1-16.

Huang, X., & Han, B. (2014). Natural variations and genome-wide association studies in crop plants. Annual review of plant biology, 65(1), 531-551.

Jain, K., & Strahl, B. D. (2023). In Memoriam C. David Allis: Chromatin unlocked. Nature Reviews Molecular Cell Biology, 24(5), 311–311. https://doi.org/10.1038/s41580-023-00601-2

Jha, U. C., Bohra, A., & Singh, N. P. (2014). Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding, 133(6), 679-701.

Jha, U. C., Nayyar, H., Sharma, K. D., Von Wettberg, E. J. B., & Siddique, K. H. (2024). Legume Crop Wild Relatives: Their Role in Improving Climate Resilient Legumes. CRC Press. https://books.google.com/books?hl=en&lr=&id=DYohEQAAQBAJ&oi=fnd&pg=PA1979&dq=genetic+diversity+bottleneck+modern+breeding+narrow+genetic+pools+climate+extremes+resilience+traits+underutilized+crops+millets+teff+quinoa+wild+relatives+pre-breeding+genomic+introgression+heat+drought+tolerance&ots=0V_XWBJK2V&sig=kfl8DTRMn-3tc5Nuam_ZxcqSvPU

KAUR, M. (2021). VARIATION IN ROOT ARCHITECTURE OF ADVANCE WHEAT LINES UNDER DROUGHT AND IRRIGATED CONDITIONS [PhD Thesis, PUNJAB AGRICULTURAL UNIVERSITY LUDHIANA]. https://krishikosh.egranth.ac.in/server/api/core/bitstreams/20c57c53-1f33-400c-a8c8-f75b45f73628/content

Khan, A. A., Wang, Y.-F., Akbar, R., & Alhoqail, W. A. (2025). Mechanistic insights and future perspectives of drought stress management in staple crops. Frontiers in Plant Science, 16, 1547452. https://doi.org/10.3389/fpls.2025.1547452

Kokkanti, R. R., Vemuri, H., Gaddameedi, A., & Rayalacheruvu, U. (2022). Variability in drought stress-induced physiological, biochemical responses and expression of DREB2A, NAC4 and HSP70 genes in groundnut (Arachis hypogaea L.). South African Journal of Botany, 144, 448–457.

Lau, S.-E., Teo, W. F. A., Teoh, E. Y., & Tan, B. C. (2022). Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discover Food, 2(1), 9. https://doi.org/10.1007/s44187-022-00009-5

Lawson, T., & Blatt, M. R. (2014). Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant physiology, 164(4), 1556-1570.

Lazaridi, E., Kapazoglou, A., Gerakari, M., Kleftogianni, K., Passa, K., Sarri, E.,…Bebeli, P. J. (2024). Crop landraces and indigenous varieties: A valuable source of genes for plant breeding. Plants, 13(6), 758.

Li, C., Chu, W., Gill, R. A., Sang, S., Shi, Y., Hu, X., Yang, Y., Zaman, Q. U., & Zhang, B. (2023). Computational tools and resources for CRISPR/Cas genome editing. Genomics, Proteomics & Bioinformatics, 21(1), 108–126.

Li, Q., Zhu, P., Yu, X., Xu, J., & Liu, G. (2024). Physiological and molecular mechanisms of rice tolerance to salt and drought stress: Advances and future directions. International Journal of Molecular Sciences, 25(17), 9404.

Li, W., Yuan, K., Ren, M., Xie, Z., Qi, K., Gong, X., Wang, Q., Zhang, S., & Tao, S. (2023). PbPDCB16-mediated callose deposition affects the plasmodesmata blockage and reduces lignification in pear fruit. Plant Science, 337, 111876. https://doi.org/10.1016/j.plantsci.2023.111876

Li, X., Wang, S., Zhu, L., Zhang, P., Qi, H., Zhang, K., Sun, H., Zhang, Y., Lei, X., Li, A., Wang, Z., Li, C., & Liu, L. (2025). Leaf hydraulic decline coordinates stomatal and photosynthetic limitations through anatomical adjustments under drought stress in cotton. Frontiers in Plant Science, 16, 1622308. https://doi.org/10.3389/fpls.2025.1622308

Liang, X., Yu, S., Ju, Y., Wang, Y., & Yin, D. (2025). Multi-Scale Remote-Sensing Phenomics Integrated with Multi-Omics: Advances in Crop Drought–Heat Stress Tolerance Mechanisms and Perspectives for Climate-Smart Agriculture. Plants, 14(18), 2829.

Liaqat, W., Altaf, M. T., Barutçular, C., Mohamed, H. I., Ali, Z., & Khan, M. O. (2024). Drought stress in sorghum: Physiological tools, breeding technology, Omics approaches and Genomic-assisted breeding -A review. Journal of Soil Science and Plant Nutrition, 24(2), 1665–1691. https://doi.org/10.1007/s42729-024-01702-3

Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., & Branca, G. (2017). Climate smart agriculture: building resilience to climate change. Springer Nature.

Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333(6042), 616-620.

Lobell, D., & Lee, R. (2024). Stagnant crop productivity growth in southern Africa despite moderate climate trends.

Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of botany, 112(2), 347-357.

Ma, Y., Tang, M., Wang, M., Yu, Y., & Ruan, B. (2024a). Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes, 15(12), 1529. https://doi.org/10.3390/genes15121529

Ma, Y., Tang, M., Wang, M., Yu, Y., & Ruan, B. (2024b). Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes, 15(12), 1529. https://doi.org/10.3390/genes15121529

Marsh, J. I., Hu, H., Gill, M., Batley, J., & Edwards, D. (2021). Crop breeding for a changing climate: Integrating phenomics and genomics with bioinformatics. Theoretical and Applied Genetics, 134, 1677-1690.

Masood, A., Per, T. S., Asgher, M., Fatma, M., Khan, M. I. R., Rasheed, F.,…Khan, N. A. (2016). Glycine betaine: role in shifting plants toward adaptation under extreme environments. Osmolytes and plants acclimation to changing environment: emerging omics technologies, 69-82.

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S.,…Gomis, M. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2(1), 2391.

Mpala, T. A., & Simatele, M. D. (2024). Climate-smart agricultural practices among rural farmers in Masvingo district of Zimbabwe: Perspectives on the mitigation strategies to drought and water scarcity for improved crop production. Frontiers in Sustainable Food Systems, 7, 1298908.

Mtwisha, L., Farrant, J., Brandt, W., & Lindsey, G. (2024). Protection mechanisms against water deficit stress: desiccation tolerance in seeds as a study case. In Drought adaptation in cereals (pp. 531-549). CRC Press.

Nawaz, A., Rehman, H. U., Usman, M., Wakeel, A., Shahid, M. S., Alam, S., Sanaullah, M., Atiq, M., & Farooq, M. (2023). Nanobiotechnology in crop stress management: An overview of novel applications. Discover Nano, 18(1), 74. https://doi.org/10.1186/s11671-023-03845-1

Osama, O. (2025). Enhancing Wheat Resilience to Abiotic Stress: Genetic Mechanisms and Genome Editing Approaches. https://www.intechopen.com/online-first/1215103

Parra-López, C., Ben Abdallah, S., Garcia-Garcia, G., Hassoun, A., Trollman, H., Jagtap, S., Gupta, S., Aït-Kaddour, A., Makmuang, S., & Carmona-Torres, C. (2025). Digital technologies for water use and management in agriculture: Recent applications and future outlook. Agricultural Water Management, 309, 109347. https://doi.org/10.1016/j.agwat.2025.109347

Pathirana, R., & Carimi, F. (2022). Management and Utilization of Plant Genetic Resources for a Sustainable Agriculture. Plants 2022, 11, 2038. s Note: MDPI stays neutral with regard to jurisdictional claims in published …. https://www.academia.edu/download/90927241/pdf.pdf

Peguero-Pina, J. J., Vilagrosa, A., Alonso-Forn, D., Ferrio, J. P., Sancho-Knapik, D., & Gil-Pelegrín, E. (2020). Living in drylands: Functional adaptations of trees and shrubs to cope with high temperatures and water scarcity. Forests, 11(10), 1028.

Pérez-Llorca, M., & Munné-Bosch, S. (2021). Aging, stress, and senescence in plants: what can biological diversity teach us? Geroscience, 43(1), 167-180.

Pinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869-882.

Priya, M., Farooq, M., & Siddique, K. H. M. (2025). Enhancing Tolerance to Combined Heat and Drought Stress in Cool-Season Grain Legumes: Mechanisms, Genetic Insights, and Future Directions. Plant, Cell & Environment, pce.15382. https://doi.org/10.1111/pce.15382

Rai, N., Rai, S. P., & Sarma, B. K. (2021). Prospects for abiotic stress tolerance in crops utilizing phyto-and bio-stimulants. Frontiers in Sustainable Food Systems, 5, 754853.

Redden, R. J., Hatfield, J. L., Vara Prasad, P., Ebert, A. W., Yadav, S. S., & O'Leary, G. J. (2014). Temperature, climate change, and global food security. Temperature and plant development, 181-202.

Reynolds, M. P., Lewis, J. M., Ammar, K., Basnet, B. R., Crespo-Herrera, L., Crossa, J., Dhugga, K. S., Dreisigacker, S., Juliana, P., & Karwat, H. (2021). Harnessing translational research in wheat for climate resilience. Journal of Experimental Botany, 72(14), 5134–5157.

Reynolds, M., Kropff, M., Crossa, J., Koo, J., Kruseman, G., Molero Milan, A.,…Tonnang, H. (2018). Role of modelling in international crop research: overview and some case studies. Agronomy, 8(12), 291.

Richards, R., Rebetzke, G., Condon, A., & Van Herwaarden, A. (2002). Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Science, 42(1), 111-121.

Rodrigues, L., Fohrafellner, J., Hardy, B., Huyghebaert, B., Leifeld, J., Lesschen, J.,…Slier, T. (2021). Towards climate-smart sustainable management of agricultural soils: Deliverable 2.3 Synthesis on estimates of achievable soil carbon sequestration on agricutural land across Europe.

Romero Munar, A. (2019). Ecophysiological effects of arbuscular mycorrhizal inoculation on arundo donax under mediterranean conditions.

Sami, A., Xue, Z., Tazein, S., Arshad, A., He Zhu, Z., Ping Chen, Y., Hong, Y., Tian Zhu, X., & Jin Zhou, K. (2021). CRISPR–Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered, 12(1), 5814–5829. https://doi.org/10.1080/21655979.2021.1969831

Sanders, G. J., & Arndt, S. K. (2012). Osmotic adjustment under drought conditions. In Plant responses to drought stress: From morphological to molecular features (pp. 199-229). Springer.

Satrio, R. D., Fendiyanto, M. H., & Miftahudin, M. (2024). Tools and Techniques Used at Global Scale Through Genomics, Transcriptomics, Proteomics, and Metabolomics to Investigate Plant Stress Responses at the Molecular Level. In M. Shahid & R. Gaur (Eds.), Molecular Dynamics of Plant Stress and its Management (pp. 555–607). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-1699-9_25

Sewelam, N., Kazan, K., & Schenk, P. M. (2016). Global plant stress signaling: reactive oxygen species at the cross-road. Frontiers in Plant Science, 7, 187.

Shahzad, A., Ullah, S., Dar, A. A., Sardar, M. F., Mehmood, T., Tufail, M. A.,…Haris, M. (2021). Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environmental Science and Pollution Research, 28, 14211-14232.

Simova-Stoilova, L., Vassileva, V., & Feller, U. (2016). Selection and breeding of suitable crop genotypes for drought and heat periods in a changing climate: which morphological and physiological properties should be considered? Agriculture, 6(2), 26.

Tarekegne, A., Wegary, D., Cairns, J. E., Zaman-Allah, M., Beyene, Y., Negera, D.,…Das, B. (2024). Genetic gains in early maturing maize hybrids developed by the International Maize and Wheat Improvement Center in Southern Africa during 2000–2018. Frontiers in Plant Science, 14, 1321308.

TopicsAgricultureResearchIndia, I. G. via W. C. C. A. T. S. P. E. (2025, July 2). India gets two genome-edited rice varieties. Mongabay-India. https://india.mongabay.com/short-article/india-gets-two-genome-edited-rice-varieties/

Tuberosa, R., Maccaferri, M., & Salvi, S. (2019). Leveraging the QTLome to enhance climate change resilience in cereals. In Advances in breeding techniques for cereal crops (pp. 383-436). Burleigh Dodds Science Publishing.

Turc, B., Sahay, S., Haupt, J., de Oliveira Santos, T., Bai, G., & Glowacka, K. (2024). Up-regulation of non-photochemical quenching improves water use efficiency and reduces whole-plant water consumption under drought in Nicotiana tabacum. Journal of Experimental Botany, 75(13), 3959–3972.

Varshney, R. K., Singh, V. K., Kumar, A., Powell, W., & Sorrells, M. E. (2018). Can genomics deliver climate-change ready crops? Current opinion in plant biology, 45, 205-211.

Wani, S. H., & Kumar, V. (2020). Heat stress tolerance in plants: physiological, molecular and genetic perspectives. John Wiley & Sons.

Wu, C., Luo, J., & Xiao, Y. (2024). Multi-omics assists genomic prediction of maize yield with machine learning approaches. Molecular Breeding, 44(2), 14. https://doi.org/10.1007/s11032-024-01454-z

Xu, X., Fonseca De Lima, C. F., Vu, L. D., & De Smet, I. (2023). When drought meets heat – a plant omics perspective. Frontiers in Plant Science, 14, 1250878. https://doi.org/10.3389/fpls.2023.1250878

Xu, Y., & Fu, X. (2022). Reprogramming of plant central metabolism in response to abiotic stresses: A metabolomics view. International Journal of Molecular Sciences, 23(10), 5716.

Yavas, I., Jamal, M. A., Ul Din, K., Ali, S., Hussain, S., & Farooq, M. (2023). Drought-Induced Changes in Leaf Morphologyand Anatomy: Overview, Implicationsand Perspectives. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/174476

Ye, C.-Y., & Fan, L. (2021). Orphan crops and their wild relatives in the genomic era. Molecular Plant, 14(1), 27-39.

Zandalinas, S. I., Casal, J., Rouached, H., & Mittler, R. (2024). Stress combination: From genes to ecosystems. The Plant Journal, 117(6), 1639–1641. https://doi.org/10.1111/tpj.16681

Zandalinas, S. I., Fichman, Y., Devireddy, A. R., Sengupta, S., Azad, R. K., & Mittler, R. (2020). Systemic signaling during abiotic stress combination in plants. Proceedings of the national academy of sciences, 117(24), 13810-13820.

Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D.,…Wang, J. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular breeding, 39, 1-10.

Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959-1968.

Zivcak, M., Brestic, M., & Sytar, O. (2016). Osmotic adjustment and plant adaptation to drought stress. Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry, 105-143.


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
54
View
0
Share