Physio-Morphological Mechanisms for Adapting Crops to a Warming World and Breeding for Heat and Drought Tolerance
Asad ullah Zubair1, Hammad Ahmad2, Muhammad Anas Bin Abdul Qadeer1, Farrukh Shehzad3, Muhammad Sameer1, Mujahid Huzaifa1, Bazgha Maryam1, Minahil Iqbal2, Mauwiz Aziz1, Maria Javed1, Muhammad Haider Ali1, Muhammad Sajad1*
Applied Agriculture Sciences 3 (1) 1-8 https://doi.org/10.25163/agriculture.3110354
Submitted: 08 September 2025 Revised: 11 November 2025 Accepted: 16 November 2025 Published: 18 November 2025
Abstract
Climate change has heightened the frequency of drought and heat stress, presenting significant risks to global agriculture and food security. These abiotic stresses impair plant water relations, nutrient uptake, photosynthesis and reproductive development leading to yield instability across major crops. This review synthesizes recent advances in understanding morphological, physiological and molecular mechanisms underpinning tolerance to these stresses. Morphological traits such as leaf rolling, wax deposition, canopy adjustments, root architecture and hydraulic regulation contribute to maintaining water-use efficiency and thermal stability. Physiological mechanisms, including photosystem II protection, non-photochemical quenching, osmotic adjustment, antioxidant defense and Rubisco activase activity safeguard carbon assimilation under stress. At the molecular level, CRISPR/Cas-mediated editing of regulatory genes (e.g., ARGOS8, OsPYL9, TaDREB2) coupled with genomic selection and speed breeding has accelerated the development of stress-resilient varieties. Case studies in maize, rice, wheat and sorghum highlight progress in delivering climate-smart cultivars, including genome-edited rice (DRR Dhan 100, Pusa DST Rice 1) and advanced CIMMYT wheat lines with improved canopy temperature depression. Complementary innovations including digital agriculture, UAV-based high-throughput phenotyping, machine learning for stress prediction and microbiome-based biostimulants further strengthen resilience strategies. Despite these advances, research gaps remain in multi-stress field testing, exploitation of landraces & wild relatives and long-term socio-economic impact assessments. Future agricultural resilience will depend on integrating molecular breeding, digital decision-support tools and sustainable management practices. Such multidisciplinary approaches can secure global food systems by fostering crops capable of thriving under increasingly hot and water-limited environments.
Keywords: Climate change, Drought stress, Heat stress, Morpho-physiological traits, CRISPR/Cas genome editing, UAV-based monitoring, Food security
References
Anjum, N. A., Thangavel, P., Rasheed, F., Masood, A., Pirasteh-Anosheh, H., & Khan, N. A. (2023). Osmolytes: Efficient Oxidative Stress-Busters in Plants. In M. W. Ansari, A. K. Singh, & N. Tuteja (Eds.), Global Climate Change and Plant Stress Management (1st ed., pp. 399–409). Wiley. https://doi.org/10.1002/9781119858553.ch27
Carillo, P. (2025). Can biostimulants enhance plant resilience to heat and water stress in the Mediterranean hotspot? Plant Stress, 16, 100802. https://doi.org/10.1016/j.stress.2025.100802
Chen, B., Zhong, D., & Monteiro, A. (2006). Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics, 7(1), 156. https://doi.org/10.1186/1471-2164-7-156
Joshi, S., Nath, J., Singh, A. K., Pareek, A., & Joshi, R. (2022). Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiologia Plantarum, 174(3), e13702. https://doi.org/10.1111/ppl.13702
Kumar, P., Paul, D., Jhajhriya, S., Kumar, R., Dutta, S., Siwach, P., & Das, S. (2024). Understanding heat-shock proteins’ abundance and pivotal function under multiple abiotic stresses. Journal of Plant Biochemistry and Biotechnology, 33(4), 492–513. https://doi.org/10.1007/s13562-024-00932-x
Lubkowska, A., Dudzinska, W., & Pluta, W. (2023). Antioxidant enzyme activity and serum HSP70 concentrations in relation to insulin resistance and lipid profile in lean and overweight young men. Antioxidants, 12(3), 655.
Mishra, N., Jiang, C., Chen, L., Paul, A., Chatterjee, A., & Shen, G. (2023). Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Frontiers in Plant Science, 14, 1110622. https://doi.org/10.3389/fpls.2023.1110622
Ray, A., & Dalal, V. K. (2025). Proteomics Response of Photosynthetic Machinery to Abiotic Stresses: A Review. Current Proteomics, 22. https://doi.org/10.2174/0115701646347647241211211906
Rudenko, N. N., Vetoshkina, D. V., Marenkova, T. V., & Borisova-Mubarakshina, M. M. (2023). Antioxidants of non-enzymatic nature: Their function in higher plant cells and the ways of boosting their biosynthesis. Antioxidants, 12(11), 2014.
Sachdev, S., Ansari, S. A., & Ansari, M. I. (2023). Role of Osmolytes in Alleviation of Oxidative Stress. In S. Sachdev, S. A. Ansari, & M. I. Ansari, Reactive Oxygen Species in Plants (pp. 173–202). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9884-3_10
Ali, A., Ullah, Z., Sher, H., Abbas, Z., & Rasheed, A. (2023). Water stress effects on stay green and chlorophyll fluorescence with focus on yield characteristics of diverse bread wheats. Planta, 257(6), 104. https://doi.org/10.1007/s00425-023-04140-0
Allendorf, F. W., Ryman, N., & Waples, R. S. (2023). In Memoriam: Fred M. Utter, a founder of fisheries genetics. Journal of Heredity, 114(5), 580–584. https://doi.org/10.1093/jhered/esad028
Al-Najadi, R., Al-Mulla, Y., Al-Abri, I., & Al-Sadi, A. M. (2025). Effectiveness of drone-based thermal sensors in optimizing controlled environment agriculture performance under arid conditions. Scientific Reports, 15(1), 9042. https://doi.org/10.1038/s41598-025-94432-0
Arinarayanasamy, T. I., Premnath, A., Balakrishnan, N., Jeyaprakash, P., Manickam, S., Chockalingam, V., & Muthurajan, R. (2025). Climate resilient millets: Emerging paradigms for the rising paradox. Genetic Resources and Crop Evolution, 72(4), 3875–3917. https://doi.org/10.1007/s10722-024-02190-1
Bhardwaj, A., Kaur, S., Padhiar, D., & Nayyar, H. (2024a). Phenotyping for heat tolerance in food crops. Plant Physiology Reports, 29(4), 736–748. https://doi.org/10.1007/s40502-024-00833-0
Bhardwaj, A., Kaur, S., Padhiar, D., & Nayyar, H. (2024b). Phenotyping for heat tolerance in food crops. Plant Physiology Reports, 29(4), 736–748. https://doi.org/10.1007/s40502-024-00833-0
Bureau, D. (2025, May 5). DRR Dhan 100 (Kamla): India’s First Genome-Edited High-Yielding Paddy Variety. Global Agriculture. https://www.global-agriculture.com/seed-industry/drr-dhan-100-kamla-indias-first-genome-edited-high-yielding-paddy-variety/
Change, I. P. O. C. (2007). Climate change 2007: the physical science basis. Agenda, 6(07), 333.
Chavhan, R. L., Jaybhaye, S. G., Hinge, V. R., Deshmukh, A. S., Shaikh, U. S., Jadhav, P. K., Kadam, U. S., & Hong, J. C. (2025). Emerging applications of gene editing technologies for the development of climate-resilient crops. Frontiers in Genome Editing, 7, 1524767. https://doi.org/10.3389/fgeed.2025.1524767
Chen, G., Li, Y., Jin, K., Gao, J., Wu, S., Cui, X., Mao, C., Yin, X., Lu, T., & Zhang, Z. (2024). Synthetic photorespiratory bypass improves rice productivity by enhancing photosynthesis and nitrogen uptake. The Plant Cell, 37(1), koaf015. https://doi.org/10.1093/plcell/koaf015
Chen, R., Lu, H., Wang, Y., Tian, Q., Zhou, C., Wang, A., Feng, Q., Gong, S., Zhao, Q., & Han, B. (2024). High-throughput UAV-based rice panicle detection and genetic mapping of heading-date-related traits. Frontiers in Plant Science, 15, 1327507. https://doi.org/10.3389/fpls.2024.1327507
Chukwudi, U. P., Babalola, O. O., Glick, B. R., Santoyo, G., & Rigobelo, E. C. (2025). Field application of beneficial microbes to ameliorate drought stress in maize. Plant and Soil. https://doi.org/10.1007/s11104-025-07446-y
Correia, P. M., Cairo Westergaard, J., Bernardes da Silva, A., Roitsch, T., Carmo-Silva, E., & Marques da Silva, J. (2022). High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress. Journal of Experimental Botany, 73(15), 5235–5251.
Cvejic, S., Jocic, S., Mitrovic, B., Bekavac, G., Mirosavljevic, M., Jeromela, A. M.,…Miladinovic, D. (2022). Innovative approaches in the breeding of climate-resilient crops. Climate Change and Agriculture: Perspectives, Sustainability and Resilience, 111-156.
Digrado, A., Ainsworth, E. A., & Change, G. (2023a). Modifying canopy architecture to optimize photosynthesis in crops. In Understanding and improving crop photosynthesis (pp. 159–200). Burleigh Dodds Science Publishing Cambridge. https://api.taylorfrancis.com/content/chapters/edit/download?identifierName=doi&identifierValue=10.19103/AS.2022.0119.11&type=chapterpdf
Digrado, A., Ainsworth, E. A., & Change, G. (2023b). Modifying canopy architecture to optimize photosynthesis in crops. In Understanding and improving crop photosynthesis (pp. 159–200). Burleigh Dodds Science Publishing Cambridge. https://api.taylorfrancis.com/content/chapters/edit/download?identifierName=doi&identifierValue=10.19103/AS.2022.0119.11&type=chapterpdf
Dwivedi, M. (2023). Phytochemical Characterisation of Taverniera cuneifolia (Roth) Arn [PhD Thesis, Maharaja Sayajirao University of Baroda (India)]. https://search.proquest.com/openview/f136304b2797e1f077d4db03b071c42b/1?pq-origsite=gscholar&cbl=2026366&diss=y
Ecophysiology. (2025). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Ecophysiology&oldid=1305227718
Francesconi, S., Harfouche, A., Maesano, M., & Balestra, G. M. (2021). UAV-Based Thermal, RGB Imaging and Gene Expression Analysis Allowed Detection of Fusarium Head Blight and Gave New Insights Into the Physiological Responses to the Disease in Durum Wheat. Frontiers in Plant Science, 12, 628575. https://doi.org/10.3389/fpls.2021.628575
Franzoni, G., Cocetta, G., Prinsi, B., Ferrante, A., & Espen, L. (2022). Biostimulants on crops: Their impact under abiotic stress conditions. Horticulturae, 8(3), 189.
Hafeez, A., Ali, S., Javed, M. A., Iqbal, R., Khan, M. N., Çig, F., Sabagh, A. E., Abujamel, T., Harakeh, S., Ercisli, S., & Ali, B. (2024). Breeding for water-use efficiency in wheat: Progress, challenges and prospects. Molecular Biology Reports, 51(1), 429. https://doi.org/10.1007/s11033-024-09345-4
Hall, A. E. (2018). Crop responses to environment: Adapting to global climate change. CRC Press.
Jain, K., & Strahl, B. D. (2023). In Memoriam C. David Allis: Chromatin unlocked. Nature Reviews Molecular Cell Biology, 24(5), 311–311. https://doi.org/10.1038/s41580-023-00601-2
Jha, U. C., Nayyar, H., Sharma, K. D., Von Wettberg, E. J. B., & Siddique, K. H. (2024). Legume Crop Wild Relatives: Their Role in Improving Climate Resilient Legumes. CRC Press. https://books.google.com/books?hl=en&lr=&id=DYohEQAAQBAJ&oi=fnd&pg=PA1979&dq=genetic+diversity+bottleneck+modern+breeding+narrow+genetic+pools+climate+extremes+resilience+traits+underutilized+crops+millets+teff+quinoa+wild+relatives+pre-breeding+genomic+introgression+heat+drought+tolerance&ots=0V_XWBJK2V&sig=kfl8DTRMn-3tc5Nuam_ZxcqSvPU
KAUR, M. (2021). VARIATION IN ROOT ARCHITECTURE OF ADVANCE WHEAT LINES UNDER DROUGHT AND IRRIGATED CONDITIONS [PhD Thesis, PUNJAB AGRICULTURAL UNIVERSITY LUDHIANA]. https://krishikosh.egranth.ac.in/server/api/core/bitstreams/20c57c53-1f33-400c-a8c8-f75b45f73628/content
Khan, A. A., Wang, Y.-F., Akbar, R., & Alhoqail, W. A. (2025). Mechanistic insights and future perspectives of drought stress management in staple crops. Frontiers in Plant Science, 16, 1547452. https://doi.org/10.3389/fpls.2025.1547452
Kokkanti, R. R., Vemuri, H., Gaddameedi, A., & Rayalacheruvu, U. (2022). Variability in drought stress-induced physiological, biochemical responses and expression of DREB2A, NAC4 and HSP70 genes in groundnut (Arachis hypogaea L.). South African Journal of Botany, 144, 448–457.
Lau, S.-E., Teo, W. F. A., Teoh, E. Y., & Tan, B. C. (2022). Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discover Food, 2(1), 9. https://doi.org/10.1007/s44187-022-00009-5
Lawson, T., & Blatt, M. R. (2014). Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant physiology, 164(4), 1556-1570.
Li, C., Chu, W., Gill, R. A., Sang, S., Shi, Y., Hu, X., Yang, Y., Zaman, Q. U., & Zhang, B. (2023). Computational tools and resources for CRISPR/Cas genome editing. Genomics, Proteomics & Bioinformatics, 21(1), 108–126.
Li, Q., Zhu, P., Yu, X., Xu, J., & Liu, G. (2024). Physiological and molecular mechanisms of rice tolerance to salt and drought stress: Advances and future directions. International Journal of Molecular Sciences, 25(17), 9404.
Li, W., Yuan, K., Ren, M., Xie, Z., Qi, K., Gong, X., Wang, Q., Zhang, S., & Tao, S. (2023). PbPDCB16-mediated callose deposition affects the plasmodesmata blockage and reduces lignification in pear fruit. Plant Science, 337, 111876. https://doi.org/10.1016/j.plantsci.2023.111876
Li, X., Wang, S., Zhu, L., Zhang, P., Qi, H., Zhang, K., Sun, H., Zhang, Y., Lei, X., Li, A., Wang, Z., Li, C., & Liu, L. (2025). Leaf hydraulic decline coordinates stomatal and photosynthetic limitations through anatomical adjustments under drought stress in cotton. Frontiers in Plant Science, 16, 1622308. https://doi.org/10.3389/fpls.2025.1622308
Liang, X., Yu, S., Ju, Y., Wang, Y., & Yin, D. (2025). Multi-Scale Remote-Sensing Phenomics Integrated with Multi-Omics: Advances in Crop Drought–Heat Stress Tolerance Mechanisms and Perspectives for Climate-Smart Agriculture. Plants, 14(18), 2829.
Liaqat, W., Altaf, M. T., Barutçular, C., Mohamed, H. I., Ali, Z., & Khan, M. O. (2024). Drought stress in sorghum: Physiological tools, breeding technology, Omics approaches and Genomic-assisted breeding -A review. Journal of Soil Science and Plant Nutrition, 24(2), 1665–1691. https://doi.org/10.1007/s42729-024-01702-3
Ma, Y., Tang, M., Wang, M., Yu, Y., & Ruan, B. (2024a). Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes, 15(12), 1529. https://doi.org/10.3390/genes15121529
Ma, Y., Tang, M., Wang, M., Yu, Y., & Ruan, B. (2024b). Advances in Understanding Drought Stress Responses in Rice: Molecular Mechanisms of ABA Signaling and Breeding Prospects. Genes, 15(12), 1529. https://doi.org/10.3390/genes15121529
Nawaz, A., Rehman, H. U., Usman, M., Wakeel, A., Shahid, M. S., Alam, S., Sanaullah, M., Atiq, M., & Farooq, M. (2023). Nanobiotechnology in crop stress management: An overview of novel applications. Discover Nano, 18(1), 74. https://doi.org/10.1186/s11671-023-03845-1
Osama, O. (2025). Enhancing Wheat Resilience to Abiotic Stress: Genetic Mechanisms and Genome Editing Approaches. https://www.intechopen.com/online-first/1215103
Parra-López, C., Ben Abdallah, S., Garcia-Garcia, G., Hassoun, A., Trollman, H., Jagtap, S., Gupta, S., Aït-Kaddour, A., Makmuang, S., & Carmona-Torres, C. (2025). Digital technologies for water use and management in agriculture: Recent applications and future outlook. Agricultural Water Management, 309, 109347. https://doi.org/10.1016/j.agwat.2025.109347
Pathirana, R., & Carimi, F. (2022). Management and Utilization of Plant Genetic Resources for a Sustainable Agriculture. Plants 2022, 11, 2038. s Note: MDPI stays neutral with regard to jurisdictional claims in published …. https://www.academia.edu/download/90927241/pdf.pdf
Priya, M., Farooq, M., & Siddique, K. H. M. (2025). Enhancing Tolerance to Combined Heat and Drought Stress in Cool-Season Grain Legumes: Mechanisms, Genetic Insights, and Future Directions. Plant, Cell & Environment, pce.15382. https://doi.org/10.1111/pce.15382
Rai, N., Rai, S. P., & Sarma, B. K. (2021). Prospects for abiotic stress tolerance in crops utilizing phyto-and bio-stimulants. Frontiers in Sustainable Food Systems, 5, 754853.
Reynolds, M. P., Lewis, J. M., Ammar, K., Basnet, B. R., Crespo-Herrera, L., Crossa, J., Dhugga, K. S., Dreisigacker, S., Juliana, P., & Karwat, H. (2021). Harnessing translational research in wheat for climate resilience. Journal of Experimental Botany, 72(14), 5134–5157.
Sami, A., Xue, Z., Tazein, S., Arshad, A., He Zhu, Z., Ping Chen, Y., Hong, Y., Tian Zhu, X., & Jin Zhou, K. (2021). CRISPR–Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered, 12(1), 5814–5829. https://doi.org/10.1080/21655979.2021.1969831
Satrio, R. D., Fendiyanto, M. H., & Miftahudin, M. (2024). Tools and Techniques Used at Global Scale Through Genomics, Transcriptomics, Proteomics, and Metabolomics to Investigate Plant Stress Responses at the Molecular Level. In M. Shahid & R. Gaur (Eds.), Molecular Dynamics of Plant Stress and its Management (pp. 555–607). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-1699-9_25
TopicsAgricultureResearchIndia, I. G. via W. C. C. A. T. S. P. E. (2025, July 2). India gets two genome-edited rice varieties. Mongabay-India. https://india.mongabay.com/short-article/india-gets-two-genome-edited-rice-varieties/
Turc, B., Sahay, S., Haupt, J., de Oliveira Santos, T., Bai, G., & Glowacka, K. (2024). Up-regulation of non-photochemical quenching improves water use efficiency and reduces whole-plant water consumption under drought in Nicotiana tabacum. Journal of Experimental Botany, 75(13), 3959–3972.
Wu, C., Luo, J., & Xiao, Y. (2024). Multi-omics assists genomic prediction of maize yield with machine learning approaches. Molecular Breeding, 44(2), 14. https://doi.org/10.1007/s11032-024-01454-z
Xu, X., Fonseca De Lima, C. F., Vu, L. D., & De Smet, I. (2023). When drought meets heat – a plant omics perspective. Frontiers in Plant Science, 14, 1250878. https://doi.org/10.3389/fpls.2023.1250878
Xu, Y., & Fu, X. (2022). Reprogramming of plant central metabolism in response to abiotic stresses: A metabolomics view. International Journal of Molecular Sciences, 23(10), 5716.
Yavas, I., Jamal, M. A., Ul Din, K., Ali, S., Hussain, S., & Farooq, M. (2023). Drought-Induced Changes in Leaf Morphologyand Anatomy: Overview, Implicationsand Perspectives. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/174476
Zandalinas, S. I., Casal, J., Rouached, H., & Mittler, R. (2024). Stress combination: From genes to ecosystems. The Plant Journal, 117(6), 1639–1641. https://doi.org/10.1111/tpj.16681