Microbial Bioactives
Microbial Bioactives | Online ISSN 2209-2161
279
Citations
170.8k
Views
157
Articles
REVIEWS (Open Access)
Microalgae and Cyanobacteria as Photosynthetic Microbial Factories: Taxonomy, Biochemical Potential, and Emerging Bioindustrial Applications
Mireille Fouillaud 1, Hamid Mukhtar 2, Ikram ul Haq 2, Carla Arenas Colarte 3, Iván Balic 4, Adrián A. Moreno 5, Maximiliano J. Amenabar 6, Óscar Díaz 4, Tamara Bruna Larenas 3, Nelson Caro Fuentes 3, Maslin Osathanunkul 7
Microbial Bioactives 9 (1) 1-8 https://doi.org/10.25163/microbbioacts.9110630
Submitted: 11 January 2026 Revised: 08 March 2026 Accepted: 15 March 2026 Published: 17 March 2026
Abstract
Microalgae and cyanobacteria are increasingly recognized as versatile photosynthetic microorganisms with substantial potential to support sustainable bioindustrial systems. Their taxonomic diversity, rapid growth rates, and capacity to synthesize proteins, lipids, pigments, and other high-value metabolites have positioned them as promising alternatives to conventional biological resources. Despite extensive experimental research, the evidence remains fragmented across species, cultivation strategies, and application domains, limiting cross-study comparability and informed decision-making. This study presents a systematic review and meta-analysis aimed at synthesizing current knowledge on the taxonomy, biochemical potential, and applied performance of microalgae and cyanobacteria as photosynthetic microbial factories.A comprehensive literature search was conducted across major scientific databases, and eligible studies were screened, selected, and analyzed following PRISMA guidelines. Quantitative data on biomass composition, metabolite production, and application-specific performance metrics were extracted and standardized. Random-effects meta-analytical models were applied to account for biological and methodological heterogeneity across studies. Forest plots were used to estimate pooled effects, while funnel plots were employed to explore reporting consistency and potential small-study effects.The synthesis reveals substantial variability in biochemical yields and application outcomes that can be attributed to taxonomic identity, cultivation conditions, and system design. Protein-rich taxa such as Arthrospira and Chlorella dominate nutraceutical applications, while lipid-specialized groups underpin emerging energy and biorefinery concepts. Environmental applications, including wastewater treatment and bioelectrochemical systems, demonstrate integrative potential but remain constrained by scale-up challenges. Overall, this review provides a structured, evidence-based framework linking organismal diversity to functional performance, supporting more rational development of microalgae- and cyanobacteria-based biotechnologies.
Keywords: microalgae; cyanobacteria; systematic review; meta-analysis; bioindustrial applications; biochemical composition; photosynthetic microorganisms
References
Abreu, A. P., Fernandes, B., Vicente, A. A., Teixeira, J., & Dragone, G. (2022). Mixotrophic cultivation of microalgae: Principles, advantages, and applications. Renewable and Sustainable Energy Reviews, 159, 112247. https://doi.org/10.1016/j.rser.2022.112247
Abreu, A. P., Martins, R., & Nunes, J. (2023). Emerging bioengineering applications of microalgae-based systems. Bioengineering, 10(8), 955. https://doi.org/10.3390/bioengineering10080955
Abu-Ghosh, S., Dubinsky, Z., Verdelho, V., & Iluz, D. (2021). Unconventional cultivation of microalgae for sustainable bio-production. Bioresource Technology, 329, 124895. https://doi.org/10.1016/j.biortech.2021.124895
Aiyer, K. S. (2021). Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance. Heliyon, 7(1), e05935. https://doi.org/10.1016/j.heliyon.2021.e05935
Alvarez, A. L., Fernández, A., Pérez, L., & Martínez, S. (2021). Wastewater-based cultivation of microalgae: A circular bioeconomy approach. Algal Research, 54, 102200.
https://doi.org/10.1016/j.algal.2021.102200
Baurain, D., Brinkmann, H., Petersen, J., Rodríguez-Ezpeleta, N., Stechmann, A., Demoulin, V., Roger, A. J., & Philippe, H. (2010). Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Molecular Biology and Evolution, 27(8), 1698–1709.
https://doi.org/10.1093/molbev/msq059
Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002
Cavalier-Smith, T. (1999). Principles of protein and lipid targeting in secondary symbiogenesis. Journal of Eukaryotic Microbiology, 46(4), 347–366. https://doi.org/10.1111/j.1550-7408.1999.tb04614.x
Champenois, J., Marfaing, H., & Pierre, R. (2015). Review of the taxonomic revision of Chlorella. Journal of Applied Phycology, 27(5), 1845–1851. https://doi.org/10.1007/s10811-014-0431-2
Chapman, V. J., & Chapman, D. J. (1973). The algae. Macmillan. https://doi.org/10.1007/978-1-349-27910-4
De Morais, M. G., Costa, J. A. V., & Souza, C. R. F. (2015). Biological activities of cyanobacteria metabolites: A review. BioMed Research International, 2015, 835761.
https://doi.org/10.1155/2015/835761
De Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J. M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen, S., … Karsenti, E. (2015). Eukaryotic plankton diversity in the sunlit ocean. Science, 348(6237), 1261605. https://doi.org/10.1126/science.1261605
Dvorák, P., Hašler, P., & Bennike, O. (2017). Phylogeny of cyanobacteria. In B. A. Whitton (Ed.), Modern topics in the phototrophic prokaryotes (pp. 3–46). Springer.
https://doi.org/10.1007/978-3-319-46261-5_1
Fadhil, S. H., & Ismail, Z. Z. (2023). Bioremediation of real-field slaughterhouse wastewater associated with power generation in algae-photosynthetic microbial fuel cell. Bioremediation Journal, 27(1), 75–83.
https://doi.org/10.1080/10889868.2021.1988507
Garcia-Pichel, F. (2009). Cyanobacteria. In M. Schaechter (Ed.), Encyclopedia of microbiology (pp. 107–124). Elsevier. https://doi.org/10.1016/B978-012373944-5.00250-9
Gonçalves, A. L., Pires, J. C. M., Simões, M., & Oliveira, R. (2016). Integration of microalgae cultivation with wastewater treatment. Algal Research, 14, 127–136.
https://doi.org/10.1016/j.algal.2016.01.008
Guiry, M. D. (2012). How many species of algae are there? Journal of Phycology, 48(5), 1057–1063.
https://doi.org/10.1111/j.1529-8817.2012.01222.x
Hachicha, R., Zouari, N., Ben Rejeb, N., & Sayadi, S. (2022). Microalgae-based bioelectrochemical systems: Advances and challenges. Applied Sciences, 12(4), 1924.
https://doi.org/10.3390/app12041924
Hadiyanto, H., Christwardana, M., & da Costa, C. (2023). Electrogenic and biomass production capabilities of a microalgae-microbial fuel cell (MMFC) system using tapioca wastewater and Spirulina platensis for COD reduction. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), 3409–3420. https://doi.org/10.1080/15567036.2019.1668085
Lauersen, K. J. (2019). Recombinant protein expression in microalgae. Planta, 249(1), 155–180.
https://doi.org/10.1007/s00425-018-3048-x
Leite, G. B., Abdelaziz, A. E., & Hallenbeck, P. C. (2013). Algal biofuels: challenges and opportunities. Bioresource technology, 145, 134-141. https://doi.org/10.1016/j.biortech.2013.02.007
Levasseur, W., Sanchez, C., & Arashiro, F. (2020). Biodiversity of microalgae and lipid composition. Biotechnology Advances, 41, 107545. https://doi.org/10.1016/j.biotechadv.2020.107545
Longtin, N., Oliveira, D., Mahadevan, A., Gejji, V., Gomes, C., & Fernando, S. (2021). Analysis of Spirulina platensis microalgal fuel cell. Journal of Power Sources, 486, 229290.
https://doi.org/10.1016/j.jpowsour.2020.229290
Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020
Metting, F. B. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17(4), 477–489. https://doi.org/10.1007/BF01574779
Milledge, J. J. (2011). Commercial application of microalgae other than as biofuels: A brief review. Reviews in Environmental Science and Bio/Technology, 10(1), 31–41. https://doi.org/10.1007/s11157-010-9214-7
Norton, T. A., Melkonian, M., & Andersen, R. A. (1996). The ecology of macroalgae. Phycologia, 35(4), 308–326. https://doi.org/10.2216/i0031-8884-35-4-308.1
Palinska, K. A., & Surosz, W. (2014). Taxonomy of cyanobacteria. Hydrobiologia, 740(1), 1–11. https://doi.org/10.1007/s10750-014-1971-9
Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635–648. https://doi.org/10.1007/s00253-004-1647-x
Raven, J. A., & Allen, J. F. (2003). Genomics and chloroplast evolution. Genome Biology, 4(3), 209. https://doi.org/10.1186/gb-2003-4-3-209
Richmond, A. (2004). Handbook of microalgal culture. Blackwell. https://doi.org/10.1002/9780470995280
Rockwell, N. C., Su, Y. S., & Lagarias, J. C. (2014). Cyanobacteria and photosensory systems. Frontiers in Ecology and Evolution, 2, 66. https://doi.org/10.3389/fevo.2014.00066
Ruggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., & Allen, A. P. (2015). A higher level classification of all living organisms. PLoS ONE, 10(4), e0119248.
https://doi.org/10.1371/journal.pone.0119248
Sili, C., Komárek, J., & Blaha, J. (2012). Arthrospira (Spirulina): Taxonomy and ecology. In B. A. Whitton (Ed.), Ecology of cyanobacteria II (pp. 677–705). Springer. https://doi.org/10.1007/978-94-007-3855-3_25
Suparmaniam, U., Yusoff, F. M., & Idris, A. (2019). Circular bioeconomy potential of microalgae. Renewable and Sustainable Energy Reviews, 115, 109361. https://doi.org/10.1016/j.rser.2019.109361
Tay, Z. H. Y., Ng, F. L., Ling, T. C., Iwamoto, M., & Phang, S. M. (2022). The use of marine microalgae in microbial fuel cells, photosynthetic microbial fuel cells and biophotovoltaic platforms for bioelectricity generation. 3 Biotech, 12(7), 148. https://doi.org/10.1007/s13205-022-03214-2
Thajuddin, N., & Subramanian, G. (2005). Cyanobacterial biodiversity and potential applications in biotechnology. Current science, 47-57. https://www.jstor.org/stable/24110431
Yadav, G., Sharma, I., Ghangrekar, M., & Sen, R. (2020). A live bio-cathode to enhance power output steered by bacteria-microalgae synergistic metabolism in microbial fuel cell. Journal of Power Sources, 449, 227560. https://doi.org/10.1016/j.jpowsour.2019.227560
Yan, N., Chen, X., Li, Y., & Wang, H. (2016). Microalgae as platforms for recombinant protein production. International Journal of Molecular Sciences, 17(6), 962. https://doi.org/10.3390/ijms17060962
Recommended articles
Illuminating Biological Dark Matter: Integrating Metagenomics, Synthetic Biology, and AI to Unlock Microbial and Genomic Potential for Therapeutics and Biotechnology
Exploring the Frontiers of Cyanobacteria and Microalgae: Integrating Emerging Technologies for Biodiversity Discovery, Metabolic Insights, and Environmental Response
Blockchain-Based Traceability as a Foundational Enabler of Trust, Safety, and Sustainability in Modern Production Systems: A Systematic Review and Meta-Analytical Synthesis
Article metrics
View details
0
Downloads
0
Citations
201
Views
0
Save
Save
0
Citation
Citation
201
View
View
0
Share
Share