Artificial Intelligence in Breast Cancer Screening in Inducing Diagnostic Accuracy with Early Detection
Amiya Kumar Prusty1, Prasanna Parida2, Pradip Kumar Prusty3, Suryakanta Swain4, Bikash Ranjan Jena2*, Ram Naresh Yadav5, Sanjoy Das6, Bhisma Narayan Ratha7
Journal of Angiotherapy 8(7) 1-8 https://doi.org/10.25163/angiotherapy.879806
Submitted: 18 May 2024 Revised: 22 July 2024 Published: 26 July 2024
Abstract
Background: The integration of artificial intelligence (AI) into breast cancer screening has shown promise in overcoming these limitations, potentially improving diagnostic accuracy and patient outcomes. Methods: This study reviews the current imaging modalities for breast cancer detection, including mammography, magnetic resonance imaging (MRI), dynamic contrast-enhanced MRI (DCE-MRI), magnetic resonance elastography (MRE), magnetic resonance spectroscopy (MRS), positron emission tomography-computed tomography (PET-CT), ultrasound, breast-specific gamma imaging (BSGI), and molecular image-guided sentinel node biopsy. It also explores the role of AI in enhancing diagnostic precision through advanced computational techniques, such as deep learning and machine learning models, focusing on object detection, segmentation, and tumor classification. Results: Mammography remains the gold standard for breast cancer detection but poses risks, such as overdiagnosis and radiation exposure. Alternative methods, like MRI, DCE-MRI, and BSGI, offer advantages in specific scenarios but also have limitations, such as low specificity and higher costs. AI systems have demonstrated superior performance in breast cancer prediction compared to human experts by reducing false-positive and false-negative rates. AI integration enhances screening programs by improving the detection accuracy of imaging biomarkers and facilitating automated interpretation. Conclusion: The incorporation of AI in breast cancer screening represents a significant advancement in early detection and diagnosis, improving treatment outcomes.
Keywords: Breast cancer screening, Artificial intelligence (AI), Imaging modalities, Diagnostic accuracy, Machine learning
References
Abel, F., Landsmann, A., Hejduk, P., Ruppert, C., Borkowski, K., Ciritsis, A., Rossi, C., & Boss, A. (2022). Detecting abnormal axillary lymph nodes on mammograms using a deep convolutional neural network. Diagnostics, 12, 1347. https://doi.org/10.3390/diagnostics12061347
Adler-Milstein, J., Chen, J. H., & Dhaliwal, G. (2021). Next-generation artificial intelligence for diagnosis: From predicting diagnostic labels to “wayfinding.” JAMA, 326(24), 2467–2468.
Altameem, A., Mahanty, C., Poonia, R. C., Saudagar, A. K. J., & Kumar, R. (2022). Breast cancer detection in mammography images using deep convolutional neural networks and fuzzy ensemble modeling techniques. Diagnostics, 12, 1812. https://doi.org/10.3390/diagnostics12081812
Amornsiripanitch, N., Bickelhaupt, S., Shin, H. J., Dang, M., Rahbar, H., & Pinker, K., et al. (2019). Diffusion-weighted MRI for unenhanced breast cancer screening. Radiology, 293(3), 504–520. https://doi.org/10.1148/radiol.2019182789
Arya, B., Gonsalves, A., & Menon, J. U. (2019). Current state of breast cancer diagnosis, treatment, and theranostics. Pharmaceutics, 13(5), 723. https://doi.org/10.3390/pharmaceutics13050723
Basilion, J. P. (2001). Current and future technologies for breast cancer imaging. Breast Cancer Research, 3(1), 14–16. https://doi.org/10.1186/bcr264
Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V., & Madabhushi, A. (2019). Artificial intelligence in digital pathology – New tools for diagnosis and precision oncology. Nature Reviews Clinical Oncology, 16(11), 703–715. https://doi.org/10.1038/s41571-019-0252-y
Bhan, A. (2013). Comparative analysis of preprocessing techniques for mammogram image enhancement. In Proceedings of the INCON VIII 2013: International Conference on Ongoing Research in Management and IT, Pune, India, January 11–13, 2013.
Bhinder, B., Gilvary, C., Madhukar, N. S., & Elemento, O. (2021). Artificial intelligence in cancer research and precision medicine. Cancer Discovery, 11(4), 900–915. https://doi.org/10.1158/2159-8290.CD-21-0090
Bolan, P. J., Meisamy, S., Baker, E. H., Lin, J., Emory, T., Nelson, M., et al. (2003). In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magnetic Resonance in Medicine, 50(6), 1134–1143. https://doi.org/10.1002/mrm.10654
Candelaria, R., & Fornage, B. D. (2011). Second-look US examination of MR-detected breast lesions. Journal of Clinical Ultrasound, 39(3), 115–121. https://doi.org/10.1002/jcu.20784
Chen, S. L., Iddings, D. M., Scheri, R. P., & Bilchik, A. J. (2006). Lymphatic mapping and sentinel node analysis: Current concepts and applications. CA: A Cancer Journal for Clinicians, 56(5), 292–309; quiz 316. https://doi.org/10.3322/canjclin.56.5.292
Choi, E. J., Choi, H., Choi, S. A., & Youk, J. H. (2016). Dynamic contrast-enhanced breast magnetic resonance imaging for the prediction of early and late recurrences in breast cancer. Medicine, 95(48), e5330. https://doi.org/10.1097/MD.0000000000005330
Coleman, C. (2017). Early detection and screening for breast cancer. Seminars in Oncology Nursing, 33(2), 141–155. https://doi.org/10.1016/j.soncn.2017.02.009
Coleman, C. (2017). Early detection and screening for breast cancer. Seminars in Oncology Nursing, 33(2), 141–155. https://doi.org/10.1016/j.soncn.2017.02.009
Cox, C. E., Kiluk, J. V., Riker, A. I., Cox, J. M., Allred, N., Ramos, D. C., et al. (2008). Significance of sentinel lymph node micrometastases in human breast cancer. Journal of the American College of Surgeons, 206(2), 261–268. https://doi.org/10.1016/j.jamcollsurg.2007.08.024
Cruz-Bernal, A., Flores-Barranco, M. M., Almanza-Ojeda, D. L., Ledesma, S., & Ibarra-Manzano, M. A. (2018). Analysis of the cluster prominence feature for detecting calcifications in mammograms. Journal of Healthcare Engineering, 2849567. https://doi.org/10.1155/2018/2849567
Dileep, G., & Gyani, S. G. (2022). Artificial intelligence in breast cancer screening and diagnosis. Cureus, 14(10), e30318. https://doi.org/10.7759/cureus.30318
Erickson, B. J., Korfiatis, P., Akkus, Z., & Kline, T. L. (2017). Machine learning for medical imaging. Radiographics, 37(2), 505–515. https://doi.org/10.1148/rg.2017160130
Flavell, R. R., Naeger, D. M., Aparici, C. M., Hawkins, R. A., Pampaloni, M. H., & Behr, S. C. (2016). Malignancies with low fluorodeoxyglucose uptake at PET/CT: Pitfalls and prognostic importance: Resident and fellow education feature. RadioGraphics, 36(1), 293–294. https://doi.org/10.1148/rg.2016150073
Gillman, J., Toth, H. K., & Moy, L. (2014). The role of dynamic contrast-enhanced screening breast MRI in populations at increased risk for breast cancer. Women's Health (London, England), 10(6), 609–622. https://doi.org/10.2217/whe.14.61
Glicksberg, B. S., Oskotsky, B., Thangaraj, P. M., Giangreco, N., Badgeley, M. A., Johnson, K. W., et al. (2019). Patient Explore R: An extensible application for dynamic visualization of patient clinical history from electronic health records in the OMOP common data model. Bioinformatics, 35(21), 4515–4518. https://doi.org/10.1093/bioinformatics/btz409
Gong, Z., & Williams, M. B. (2015). Comparison of breast specific gamma imaging and molecular breast tomosynthesis in breast cancer detection: Evaluation in phantoms. Medical Physics, 42(7), 4250–4259. https://doi.org/10.1118/1.4922398
Guo, X., Liu, Z., Sun, C., Zhang, L., Wang, Y., Li, Z., Shi, J., Wu, T., Cui, H., Zhang, J., et al. (2020). Deep learning radiomics of ultrasonography: Identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer. EBioMedicine, 60, 103018. https://doi.org/10.1016/j.ebiom.2020.103018
Ha, R., Chang, P., Karcich, J., Mutasa, S., Fardanesh, R., Wynn, R. T., Liu, M. Z., & Jambawalikar, S. (2018). Axillary lymph node evaluation utilizing convolutional neural networks using MRI dataset. Journal of Digital Imaging, 31, 851–856. https://doi.org/10.1007/s10278-018-0086-7
Hardy, M., & Harvey, H. (2020). Artificial intelligence in diagnostic imaging: Impact on the radiography profession. British Journal of Radiology, 93, 20190840. https://doi.org/10.1259/bjr.20190840
Hawley, J. R., Kalra, P., Mo, X., Raterman, B., Yee, L. D., & Kolipaka, A. (2017). Quantification of breast stiffness using MR elastography at 3 Tesla with a soft sternal driver: A reproducibility study. Journal of Magnetic Resonance Imaging, 45(5), 1379–1384. https://doi.org/10.1002/jmri.25511
Heywang-Köbrunner, S. H., Hacker, A., & Sedlacek, S. (2011). Advantages and disadvantages of mammography screening. Breast Care (Basel), 6(3), 199–207. https://doi.org/10.1159/000329005
Hmida, M., Hamrouni, K., Solaiman, B., & Boussetta, S. (2018). Mammographic mass segmentation using fuzzy contours. Computers in Biology and Medicine, 164, 131–142. https://doi.org/10.1016/j.cmpb.2018.07.005
Jethava, A., Ali, S., Wakefield, D., Crowell, R., Sporn, J., & Vrendenburgh, J. (2015). Diagnostic accuracy of MRI in predicting breast tumor size: Comparative analysis of MRI vs. histopathological assessed breast tumor size. Connecticut Medicine, 79(5), 261–267.
Kadoya, T., Aogi, K., Kiyoto, S., Masumoto, N., Sugawara, Y., & Okada, M. (2013). Role of maximum standardized uptake value in fluorodeoxyglucose positron emission tomography/computed tomography predicts malignancy grade and prognosis of operable breast cancer: A multi-institute study. Breast Cancer Research and Treatment, 141(2), 269–275. https://doi.org/10.1007/s10549-013-2687-7
Lorenzen, J., Sinkus, R., Lorenzen, M., Dargatz, M., Leussler, C., Röschmann, P., & Adam, G. (2002). MR elastography of the breast: Preliminary clinical results. RoFo Fortschritte auf dem Gebiet der Röntgenstrahlen und der Bildgebenden Verfahren, 174, 830–834.
Narayanan, D., Madsen, K. S., Kalinyak, J. E., & Berg, W. A. (2011). Interpretation of positron emission mammography and MRI by experienced breast imaging radiologists: Performance and observer reproducibility. AJR American Journal of Roentgenology, 196(4), 971–981. https://doi.org/10.2214/AJR.10.5081
Niazi, M. K. K., Parwani, A. V., & Gurcan, M. N. (2019). Digital pathology and artificial intelligence. The Lancet Oncology, 20(5), e253–e261. https://doi.org/10.1016/S1470-2045(19)30154-8
Painuli, D., Bhardwaj, S., & Köse, U. (2022). Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review. Computers in Biology and Medicine, 146, 10558. https://doi.org/10.1016/j.compbiomed.2022.10558
Patel, B. K., Samreen, N., Zhou, Y., Chen, J., Brandt, K., Ehman, R., et al. (2021). MR elastography of the breast: Evolution of technique, case examples, and future directions. Clinical Breast Cancer, 21(1), e102–e111. https://doi.org/10.1016/j.clbc.2020.08.005
Rahbar, H., & Partridge, S. C. (2016). Multiparametric MR imaging of breast cancer. Magnetic Resonance Imaging Clinics of North America, 24(1), 223–238. https://doi.org/10.1016/j.mric.2015.08.012
Ren, T., Cattell, R., Duanmu, H., Huang, P., Li, H., Vanguri, R., Liu, M. Z., Jambawalikar, S., Ha, R., Wang, F., et al. (2020). Convolutional neural network detection of axillary lymph node metastasis using standard clinical breast MRI. Clinical Breast Cancer, 20, e301–e308. https://doi.org/10.1016/j.clbc.2019.11.009
S, P., N, K. V., & S, S. (2019). Breast cancer detection using crow search optimization based intuitionistic fuzzy clustering with neighborhood attraction. Asian Pacific Journal of Cancer Prevention, 20(1), 157–165. https://doi.org/10.31557/APJCP.2019.20.1.157
Sobhani, F., Robinson, R., Hamidinekoo, A., Roxanis, I., Somaiah, N., & Yuan, Y. (2021). Artificial intelligence and digital pathology: Opportunities and implications for immuno-oncology. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1875(2), 188520. https://doi.org/10.1016/j.bb
Song, B. I. (2021). A machine learning-based radiomics model for the prediction of axillary lymph-node metastasis in breast cancer. Breast Cancer, 28, 664–671. https://doi.org/10.1007/s12282-020-01202-z
Subramanian, M., Wojtusciszyn, A., Favre, L., Boughorbel, S., Shan, J., & Letaief, K. B. (2020). Precision medicine in the era of artificial intelligence: Implications in chronic disease management. Journal of Translational Medicine, 18(1), 472. https://doi.org/10.1186/s12967-020-02658-5
Sundaram, K. M., Sasikala, D., & Rani, P. A. (2014). On preprocessing a mammogram image using adaptive median filter. International Journal of Innovative Research in Science, Engineering and Technology, 3, 10333–10337.
Surti, S. (2013). Radionuclide methods and instrumentation for breast cancer detection and diagnosis. Seminars in Nuclear Medicine, 43(4), 271–280. https://doi.org/10.1053/j.semnuclmed.2013.03.003
Tagliafico, A. S., Piana, M., Schenone, D., Lai, R., Massone, A. M., & Houssami, N. (2020). Overview of radiomics in breast cancer diagnosis and prognostication. Breast, 49, 74–80. https://doi.org/10.1016/j.breast.2019.10.018
Tahmasebi, A., Qu, E., Sevrukov, A., Liu, J.-B., Wang, S., Lyshchik, A., Yu, J., & Eisenbrey, J. R. (2021). Assessment of axillary lymph nodes for metastasis on ultrasound using artificial intelligence. Ultrasonography, 43, 329–336. https://doi.org/10.1177/01617346211035315
Tizhoosh, H. R., & Pantanowitz, L. (2018). Artificial intelligence and digital pathology: Challenges and opportunities. Journal of Pathology Informatics, 9, 38. https://doi.org/10.4103/jpi.jpi_53_18
Tran, W. T., Sadeghi-Naini, A., Lu, F. I., Gandhi, S., Meti, N., Brackstone, M., et al. (2021). Computational radiology in breast cancer screening and diagnosis using artificial intelligence. Canadian Association of Radiologists Journal, 72(1), 98–108. https://doi.org/10.1177/0846537120949974
Van Timmeren, J. E., Cester, D., Tanadini-Lang, S., Alkadhi, H., & Baessler, B. (2020). Radiomics in medical imaging—“How-to” guide and critical reflection. Insights into Imaging, 11(1), 91. https://doi.org/10.1186/s13244-020-00887-2
Vrdoljak, J., Krešo, A., Kumric, M., Martinovic, D., Cvitkovic, I., Grahovac, M., Vickov, J., Bukic, J., & Božic, J. (2023). The role of AI in breast cancer lymph node classification: A comprehensive review. Cancers (Basel), 15(8), 2400. https://doi.org/10.3390/cancers15082400
Xu, Z., Wang, X., Zeng, S., Ren, X., Yan, Y., & Gong, Z. (2021). Applying artificial intelligence for cancer immunotherapy. Acta Pharmaceutica Sinica B, 11(11), 3393–3405. https://doi.org/10.1016/j.apsb.2021.02.007
Yang, X., Wu, L., Ye, W., Zhao, K., Wang, Y., Liu, W., Li, J., Li, H., Liu, Z., & Liang, C. (2020). Deep learning signature based on staging CT for preoperative prediction of sentinel lymph node metastasis in breast cancer. Academic Radiology, 27, 1226–1233. https://doi.org/10.1016/j.acra.2019.11.007
Yuan, J., Hu, Z., Mahal, B. A., Zhao, S. D., Kensler, K. H., Pi, J., et al. (2018). Integrated analysis of genetic ancestry and genomic alterations across cancers. Cancer Cell, 34(4), 549–560.e9. https://doi.org/10.1016/j.ccell.2018.08.019
View Dimensions
View Altmetric
Save
Citation
View
Share