EMAN RESEARCH PUBLISHING | <p>Immunological and Molecular Analysis of Virulence and Resistance of <em>Pseudomonas aeruginosa</em> in Urinary Tract Infections</p>
Inflammation Cancer Angiogenesis Biology and Therapeutics | Impact 0.1 (CiteScore) | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Immunological and Molecular Analysis of Virulence and Resistance of Pseudomonas aeruginosa in Urinary Tract Infections

Zainab Hayder Jaber Alkufaishi 1, Lamees A. Abdul-Lateef 2 *, Anwar Kadhim Hussein AL-saffar 3, Jwan Ahmed Ali Alhamawandi 4

+ Author Affiliations

Journal of Angiotherapy 8(4) 1-6 https://doi.org/10.25163/angiotherapy.849601

Submitted: 06 February 2024  Revised: 02 April 2024  Published: 08 April 2024 

Abstract

Background: Pseudomonas aeruginosa is an opportunistic pathogen notorious for its role in antibiotic resistance and nosocomial infections. This study investigates immunological markers in UTI with P. aeruginosa. Method: Between June 2022 and January 2023, 150 patients with suspected UTIs and 40 healthy controls were enrolled at AL-Hilla Teaching Hospital. Molecular tests, including PCR for MexA and pareE genes, and ELISA tests for TNF-α, IL-12, and IL-17, were conducted. Results: Out of 150 samples, 20 (13.3%) were culture-negative, while 90 harbored different bacterial species. Pseudomonas aeruginosa was isolated in 26.6% of samples, with 40% positive for MexA and 70% for pareE genes via PCR. UTI patients with P. aeruginosa showed significantly higher TNF-α (620.53 ± 18.455 ng/ml) and TNF-β levels (630.32 ± 25.150 ng/ml) compared to controls (P <0..01). Conclusion: Elevated levels of IL-12 and IL-17 were observed in P. aeruginosa-infected UTI patients compared to TNF-α levels, highlighting a distinct cytokine profile associated with Pseudomonas aeruginosa UTIs.Key words: Pseudomonas aurogenosa,TNF, IL-12, IL-17, pareE and MexA.

Keywords: Pseudomonas aeruginosa, urinary tract infections, virulence factors, antibiotic resistance, cytokine analysis

References

Aguilar, G. R., Swetschinski, L. R., Weaver, N. D., Ikuta, K. S., Mestrovic, T., Gray, A. P., ... & Naghavi, M. (2023). The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis. The Lancet Regional Health–Americas, 25.

Bassetti, M., Vena, A., Croxatto, A., Righi, E., & Guery, B. (2018). How to manage Pseudomonas aeruginosa infections. Drugs in Context, 7, 212527. https://doi.org/10.7573/dic.212527

Breidenstein, E. B. M., de la Fuente-Núñez, C., & Hancock, R. E. W. (2011). Pseudomonas aeruginosa: All roads lead to resistance. Trends in Microbiology, 19(8), 419-426. https://doi.org/10.1016/j.tim.2011.04.005

Bucsan, A. N., Veatch, A., Singh, D. K., Akter, S., Golden, N. A., Kirkpatrick, M., ... & Kaushal, D. (2022). Response to hypoxia and the ensuing dysregulation of inflammation impacts Mycobacterium tuberculosis pathogenicity. American journal of respiratory and critical care medicine, 206(1), 94-104.

Bush, K. (2018). Past and present perspectives on β-lactamases. Antimicrobial Agents and Chemotherapy, 62(10), e01076-18. https://doi.org/10.1128/AAC.01076-18

Carattoli, A. (2013). Plasmids and the spread of resistance. International Journal of Medical Microbiology, 303(6-7), 298-304. https://doi.org/10.1016/j.ijmm.2013.02.001

Chen, F., Fang, L., Feng, K., & Xu, J. (2023). Respiratory tract infection after oral and maxillofacial surgery under general anesthesia and related factors. The Journal of Infection in Developing Countries, 17(07), 979-985.

Dash, N. R., Albataineh, M. T., Alhourani, N., Khoudeir, A. M., Ghanim, M., Wasim, M., & Mahmoud, I. (2018). Community-acquired urinary tract infections due to extended-spectrum β-lactamase-producing organisms in United Arab Emirates. Travel medicine and infectious disease, 22, 46-50.

George, D., & Mallery, P. (2019). IBM SPSS statistics 26 step by step: A simple guide and reference. Routledge.

Heidenreich, P. A., Bozkurt, B., Aguilar, D., Allen, L. A., Byun, J. J., Colvin, M. M., ... & Yancy, C. W. (2022). 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Journal of the American College of Cardiology, 79(17), e263-e421.

 

Heidenreich, P. A., Bozkurt, B., Aguilar, D., Allen, L. A., Byun, J. J., Colvin, M. M., ... & Yancy, C. W. (2022). 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Journal of the American College of Cardiology, 79(17), e263-e421.

Hentzer, M., Teitzel, G. M., Balzer, G. J., Heydorn, A., Molin, S., Givskov, M., ... & Parsek, M. R. (2001). Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. Journal of Bacteriology, 183(18), 5395-5401. https://doi.org/10.1128/JB.183.18.5395-5401.2001

Hu, Y., Kang, Y., Huang, F., Su, Y., Zhou, X., Wang, A. J., & Gao, S. H. (2022). Distinct responses of Pseudomonas aeruginosa PAO1 exposed to different levels of polystyrene nanoplastics. Science of The Total Environment, 852, 158214.

Huang, Y., Tang, J. H., Cai, Z., Qi, Y., Jiang, S., Ma, T. T., ... & Ma, Y. Y. (2022). Alterations in the nasopharyngeal microbiota associated with active and latent tuberculosis. Tuberculosis, 136, 102231.

Kabalan, S., Juhos, K., Tóth, E., & Biró, B. (2022, August). Biomass production of five cover crops in relation with some soil-quality indicators and colonization by arbuscular mycorrhiza fungi. In XXXI International Horticultural Congress (IHC2022): International Symposium on Plant Nutrition, Fertilization, Soil Management 1375 (pp. 169-176).

Kalia, V. C., & Purohit, H. J. (2011). Quenching the quorum sensing system: Potential antibacterial drug targets. Critical Reviews in Microbiology, 37(2), 121-140. https://doi.org/10.3109/1040841X.2010.532479

Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S., & Abedon, S. T. (2010). Phage therapy in clinical practice: Treatment of human infections. Current Pharmaceutical Biotechnology, 11(1), 69-86. https://doi.org/10.2174/138920110790725401

Li, P. K. T., Chow, K. M., Cho, Y., Fan, S., Figueiredo, A. E., Harris, T., ... & Johnson, D. W. (2022). ISPD peritonitis guideline recommendations: 2022 update on prevention and treatment. Peritoneal dialysis international, 42(2), 110-153.

Moya, B., Dötsch, A., Juan, C., Blázquez, J., Zamorano, L., Haussler, S., & Oliver, A. (2009). Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathogens, 5(3), e1000353. https://doi.org/10.1371/journal.ppat.1000353

Ochman, H., Lawrence, J. G., & Groisman, E. A. (2000). Lateral gene transfer and the nature of bacterial innovation. Nature, 405(6784), 299-304. https://doi.org/10.1038/35012500

Pelegrin, A. C., Palmieri, M., Mirande, C., Oliver, A., Moons, P., Goossens, H., & van Belkum, A. (2021). Pseudomonas aeruginosa: a clinical and genomics update. FEMS Microbiology Reviews, 45(6), fuab026.

Qadri, H., Shah, A. H., Alkhanani, M., Almilaibary, A., & Mir, M. A. (2023). Immunotherapies against human bacterial and fungal infectious diseases: A review. Frontiers in Medicine, 10, 1135541. https://doi.org/10.3389/fmed.2023.1135541

Ranaivomanana, P., Johnston, C., Groot, P. J., Aerts, C., Lees, R., IJspeert, L., ... & Pieterse, D. (2023). Identifying and characterising the population of hot sub-luminous stars with multi-colour MeerLICHT data. Astronomy & Astrophysics, 672, A69.

Shi, G., Hu, J., Ding, F., Li, S., Shi, W., & Chen, Y. (2022). Exogenous Pseudomonas aeruginosa application improved the phytoremediation efficiency of Lolium multiflorum Lam on Cu–Cd co-contaminated soil. Environmental Technology & Innovation, 27, 102489.

Singh, P. K., Schaefer, A. L., Parsek, M. R., Moninger, T. O., Welsh, M. J., & Greenberg, E. P. (2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407(6805), 762-764. https://doi.org/10.1038/35037627

Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. The Lancet, 358(9276), 135-138. https://doi.org/10.1016/S0140-6736(01)05321-1

Sundararajan, S., Karunakaran, K., & Muniyan, R. (2023). Structure based virtual screening and discovery of novel inhibitors against FabD protein of Mycobacterium tuberculosis. Journal of Biomolecular Structure and Dynamics, 1-12.

World Health Organization (WHO). (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed. Retrieved from https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed

Zhao, X., Yu, Z., Zhang, C., Liu, L., He, W., Yang, M., ... & Dong, J. (2022). Advances in the treatment of Pseudomonas aeruginosa infections. Journal of Medical Microbiology, 71(7), 001473.

Committee on Publication Ethics

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



10
Save
0
Citation
163
View
7
Share