Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Phytochemicals in Cancer with Special Emphasis on Ovarian Cancer

Meher U Nessa1,2, Md S Anwar1, Fazlul Huq3*

+ Author Affiliations

Journal of Angiotherapy 4(1) 156-166 https://doi.org/10.25163/angiotherapy.41209822608080720

Submitted: 26 May 2020  Revised: 30 June 2020  Published: 08 July 2020 

Abstract

Ovarian cancer is one of the most prevalent malignancies and is the deadliest among all gynecologic cancers. Although tremendous progress has been made on cancer biology and tumour treatment, knowledge on the mechanisms of cancer development including that for ovarian cancer remains incomplete. Thus, in addition to cancer prevention it is urgent to develop effective therapeutic modalities even for the advanced stage and drug-resistant forms of the disease with ovarian cancer being no exception. Multistep tumourigenesis is activated by various environmental carcinogens, inflammatory agents and tumour promoters. Carcinogens modulate the transcription factors, anti-apoptotic and pro-apoptotic proteins, protein kinases, cell cycle proteins, cell adhesion molecules and growth factor signaling pathways and thus produce malignancies. Phytochemicals exert their antitumour effects by numerous signaling pathways which in turn affect multiple steps in the various cellular pathways leading to tumourigenesis. Antitumour active phytochemicals have cytotoxic action in all ovarian cancer cell lines with comparable or greater activity in the resistant cell lines than in the parent cell line. As phytochemicals have been a part of human diet without toxic effects, they are likely to protect normal cells and tissues caused by the direct and bystander effects of platinum drugs. Therefore, it is quite logical to assume that phytochemicals possessing both cancer preventive and therapeutic attributes, can be ideal candidates in cancer prevention and synergistic outcomes from their combination with targeted therapy.

Key Words: Ovarian cancer, Phytochemicals, Cell signaling pathways, Chemoprevention, Targeted therapy

References

Adams, P.D. (2001). Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks, Biochimica et Biophysica Acta, Reviews on Cancer 1471, 3, M123-M133.
https://doi.org/10.1016/S0304-419X(01)00019-1

Aggarwal, B.B., Kunnumakkara, A.B., Harikumar, K.B., Tharakan, S.T., Sung, B. and Anand, P. (2008). Potential of spice-derived phytochemicals for cancer prevention, Planta Med 74, 13, 1560-1569.
https://doi.org/10.1055/s-2008-1074578
PMid:18612945

Aggarwal, B.B. and Shishodia, S. (2006). Molecular targets of dietary agents for prevention and therapy of cancer, Biochemical Pharmacology 71, 10, 1397-1421.
https://doi.org/10.1016/j.bcp.2006.02.009
PMid:16563357

Alam, M. (2018). Studies on novel palladiums alone and in combination with phytochemicals in tumour models PhD Thesis, The University of Sydney, Australia.

Alamro, A.A.S. (2015). Studies on combination between tumour active compounds in ovarian tumour models, PhD Thesis, The University of Sydney, Australia.

Ali-Seyed, M., Jantan, I., Vijayaraghavan, K. and Bukhari, S.N. (2016). Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy, Chem Biol Drug Des 87, 4, 517-536.
https://doi.org/10.1111/cbdd.12682
PMid:26535952

Allison, A.C. and Eugui, E.M. (2000). Mycophenolate mofetil and its mechanisms of action, Immunopharmacology 47, 2-3, 85-118.
https://doi.org/10.1016/S0162-3109(00)00188-0

Amos, C. and Struewing, J. (1993). Genetic epidemiology of epithelial ovarian cancer, Cancer 71, S2, 566-572.
https://doi.org/10.1002/cncr.2820710212
PMid:8420678

Anon (2019). Ovarian Cancer Research Alliance, The American Cancer Society.

Anwar, M. (2018). Natural compounds in combination with platinum drugs administered to ovarian cancer models towards synergistic outcomes PhD Thesis, The University of Sydney, Australia.

Anwar, M.S., Yu, J.Q., Beale, P. and Huq, F. (2016). 6-Shogaol and mycophenolic acid are seen to act synergistically in combination with platinum drug in killing ovarian cancer cells, European Journal of Cancer 69, S18.
https://doi.org/10.1016/S0959-8049(16)32634-X

Anwar, M.S., Yu, J.Q., Beale, P. and Huq, F. (2017). Abstract 4212: Natural compounds alone and in combination with platinum drugs found to show significant anti-tumour activity against ovarian cancer cell lines, Cancer Research 77, 13 Supplement, 4212-4212.
https://doi.org/10.1158/1538-7445.AM2017-4212

Arora, S., Bhardwaj, A., Srivastava, S.K., Singh, S., McClellan, S., Wang, B. and Singh, A.P. (2011). Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells, PloS one 6, 6, e21573.
https://doi.org/10.1371/journal.pone.0021573
PMid:21720559 PMCid:PMC3123370

Arora, S., Singh, S., Piazza, G.A., Contreras, C.M., Panyam, J. and Singh, A.P. (2012). Honokiol: a novel natural agent for cancer prevention and therapy, Current molecular medicine 12, 10, 1244-1252.
https://doi.org/10.2174/156652412803833508
PMid:22834827 PMCid:PMC3663139

Aunan, J.R., Cho, W.C. and Soreide, K. (2017). The Biology of Aging and Cancer: A Brief Overview of Shared and Divergent Molecular Hallmarks, Aging dis 8, 5, 628-642.
https://doi.org/10.14336/AD.2017.0103
PMid:28966806 PMCid:PMC5614326

Bader, Y. and Getoff, N. (2006). Effect of resveratrol and mixtures of resveratrol and mitomycin C on cancer cells under irradiation, Anticancer Res 26, 6B, 4403-4408.

Banerjee, S., Li, Y., Wang, Z. and Sarkar, F.H. (2008). Multi-targeted therapy of cancer by genistein, Cancer Letters (Shannon, Ireland) 269, 2, 226-242.
https://doi.org/10.1016/j.canlet.2008.03.052
PMid:18492603 PMCid:PMC2575691

Barbieri, D., Grassilli, E., Monti, D., Salvioli, S., Franceschini, M.G., Franchini, A., Belelsia, E., Salomoni, P., Negro, P. and et al. (1994). D-Ribose and deoxy-D-ribose induce apoptosis in human quiescent peripheral blood mononuclear cells, Biochemical and Biophysical Research Communications 201, 3, 1109-1116.
https://doi.org/10.1006/bbrc.1994.1820
PMid:8024552

Bhutani, M., Pathak, A.K., Nair, A.S., Kunnumakkara, A.B., Guha, S., Sethi, G. and Aggarwal, B.B. (2007). Capsaicin Is a Novel Blocker of Constitutive and Interleukin-6-Inducible STAT3 Activation, Clinical Cancer Research 13, 10, 3024-3032.
https://doi.org/10.1158/1078-0432.CCR-06-2575
PMid:17505005

Binju, M., Padilla, M.A., Singomat, T., Kaur, P., Suryo Rahmanto, Y., Cohen, P.A. and Yu, Y. (2019). Mechanisms underlying acquired platinum resistance in high grade serous ovarian cancer - a mini review, Biochim 1863, 2, 371-378.
https://doi.org/10.1016/j.bbagen.2018.11.005
PMid:30423357

Boulikas, T. and Vougiouka, M. (2004). Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs (review), Oncology Reports 11, 3, 559-595.
https://doi.org/10.3892/or.11.3.559

Bouthillier, L., Charbonneau, M. and Brodeur, J. (1996). Assessment of the role of glutathione conjugation in the protection afforded by anethol dithiolthione against hexachloro-1,3-butadiene-induced nephrotoxicity, Toxicology and Applied Pharmacology 139, 1, 177-185.
https://doi.org/10.1006/taap.1996.0156
PMid:8685901

Brian T. Kawasaki, E.M.H., Tashan Mistree, and Farrar, a.W.L. (2008). Targeting cancer stem cells with phytochemicals, Molecular Interventions 8, 4, 11.
https://doi.org/10.1124/mi.8.4.9
PMid:18829843

Chainy, G.B.N., Manna, S.K., Chaturvedi, M.M. and Aggarwal, B.B. (2000). Anethole blocks both early and late cellular responses transduced by tumor necrosis factor: effect on NF-κB, AP-1, JNK, MAPKK and apoptosis, Oncogene 19, 25, 2943-2950.
https://doi.org/10.1038/sj.onc.1203614
PMid:10871845

Chan, M.M., Chen, R. and Fong, D. (2018). Targeting cancer stem cells with dietary phytochemical - Repositioned drug combinations, Cancer letters 433, 53-64.
https://doi.org/10.1016/j.canlet.2018.06.034
PMid:29960048 PMCid:PMC7117025

Chan, M.M. and Fong, D. (2007). Overcoming ovarian cancer drug resistance with phytochemicals and other compounds. In. Parsons, R.A. (Ed.), Prog. Cancer Drug Resist. Res. Nova Science Publishers, Inc., pppp1-28.

Chang, B., Schlussel, Y., Sukumar, D., Schneider, S.H. and Shapses, S.A. (2015). Influence of vitamin D and estrogen receptor gene polymorphisms on calcium absorption: BsmI predicts a greater decrease during energy restriction, Bone 81, 138-144.
https://doi.org/10.1016/j.bone.2015.07.011
PMid:26165414 PMCid:PMC4641000

Chen, C.-Y., Liu, T.-Z., Liu, Y.-W., Tseng, W.-C., Liu, R.H., Lu, F.-J., Lin, Y.-S., Kuo, S.-H. and Chen, C.-H. (2007). 6-shogaol (alkanone from ginger) induces apoptotic cell death of human hepatoma p53 mutant Mahlavu subline via an oxidative stress-mediated caspase-dependent mechanism, Journal of agricultural and food chemistry 55, 3, 948-954.
https://doi.org/10.1021/jf0624594
PMid:17263498

Chen, C.H. and deGraffenried, L.A. (2012). Anethole suppressed cell survival and induced apoptosis in human breast cancer cells independent of estrogen receptor status, Phytomedicine 19, 8-9, 763-767.
https://doi.org/10.1016/j.phymed.2012.02.017
PMid:22464689

Chintharlapalli, S., Papineni, S., Ramaiah, S.K. and Safe, S. (2007). Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors, Cancer Research 67, 6, 2816-2823.
https://doi.org/10.1158/0008-5472.CAN-06-3735
PMid:17363604

Council, C. (2020), April 2020. Understanding Ovarian Cancer. from https://www.cancer.org.au/content/about_cancer/ebooks/cancertypes/Understanding_Ovarian_Cancer_booklet_April_2020.pdf#_ga=2.102422786.2071573207.1593235825-1363732324.1554694293 (accessed 20.05.20).

Crul, M., van Waardenburg, R.C., Beijnen, J.H. and Schellens, J.H. (2002). DNA-based drug interactions of cisplatin, Cancer Treatment Reviews 28, 6, 291-303.
https://doi.org/10.1016/S0305-7372(02)00093-2

Dalle-Donne, I., Giustarini, D., Colombo, R., Rossi, R. and Milzani, A. (2003). Protein carbonylation in human diseases, Trends in Molecular Medicine 9, 4, 169-176.
https://doi.org/10.1016/S1471-4914(03)00031-5

Dawson, A., Fernandez, M.L., Anglesio, M., Yong, P.J. and Carey, M.S. (2018). Endometriosis and endometriosis-associated cancers: new insights into the molecular mechanisms of ovarian cancer development, Ecancermedicalscience 12, 803.
https://doi.org/10.3332/ecancer.2018.803
PMid:29456620 PMCid:PMC5813919

Drukarch, B., Schepens, E., Stoof, J.C. and Langeveld, C.H. (1997). Anethole dithiolethione prevents oxidative damage in glutathione-depleted astrocytes, European Journal of Pharmacology 329, 2/3, 259-262.
https://doi.org/10.1016/S0014-2999(97)89187-X

El-Dakhakhny, M., Madi, N., Lembert, N. and Ammon, H. (2002). < i> Nigella sativa</i> oil, nigellone and derived thymoquinone inhibit synthesis of 5-lipoxygenase products in polymorphonuclear leukocytes from rats, Journal of Ethnopharmacology 81, 2, 161-164.
https://doi.org/10.1016/S0378-8741(02)00051-X

El-Mahmoudy, A., Matsuyama, H., Borgan, M., Shimizu, Y., El-Sayed, M., Minamoto, N. and Takewaki, T. (2002). Thymoquinone suppresses expression of inducible nitric oxide synthase in rat macrophages, International immunopharmacology 2, 11, 1603-1611.
https://doi.org/10.1016/S1567-5769(02)00139-X

El-Mahmoudy, A., Shimizu, Y., Shiina, T., Matsuyama, H., Nikami, H. and Takewaki, T. (2005). Macrophage-derived cytokine and nitric oxide profiles in type I and type II diabetes mellitus: effect of thymoquinone, Acta diabetologica 42, 1, 23-30.
https://doi.org/10.1007/s00592-005-0170-6
PMid:15868110

El Mezayen, R., El Gazzar, M., Nicolls, M.R., Marecki, J.C., Dreskin, S.C. and Nomiyama, H. (2006). Effect of thymoquinone on cyclooxygenase expression and prostaglandin production in a mouse model of allergic airway inflammation, Immunology letters 106, 1, 72-81.
https://doi.org/10.1016/j.imlet.2006.04.012
PMid:16762422

England, K. and Cotter, T.G. (2005). Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis, Redox Report 10, 5, 237-245.
https://doi.org/10.1179/135100005X70224
PMid:16354412

Evan, G.I. and Vousden, K.H. (2001). Proliferation, cell cycle and apoptosis in cancer, Nature (London, United Kingdom) 411, 6835, 342-348.
https://doi.org/10.1038/35077213
PMid:11357141

Evans, B.A.J., Griffiths, K. and Morton, M.S. (1995). Inhibition of 5α-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids, Journal of Endocrinology 147, 2, 295-302.
https://doi.org/10.1677/joe.0.1470295
PMid:7490559

Fathalla, M. (1971). Incessant ovulation--a factor in ovarian neoplasia?, Lancet 2, 7716, 163.
https://doi.org/10.1016/S0140-6736(71)92335-X

Fleet, J.C., DeSmet, M., Johnson, R. and Li, Y. (2012). Vitamin D and Cancer: A review of molecular mechanisms, The Biochemical journal 441, 1, 61-76.
https://doi.org/10.1042/BJ20110744
PMid:22168439 PMCid:PMC4572477

Ford, D., Easton, D., Stratton, M., Narod, S., Goldgar, D., Devilee, P., Bishop, D., Weber, B., Lenoir, G. and Chang-Claude, J. (1998). Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium, American journal of human genetics 62, 3, 676.
https://doi.org/10.1086/301749
PMid:9497246 PMCid:PMC1376944

Foss, M., Wilcox, B.W., Alsop, G.B., Zhang, D., Foss, M., Wilcox, B.W.L., Alsop, G.B. and Zhang, D. (2008). Taxol crystals can masquerade as stabilized microtubules, PLoS ONE [Electronic Resource] 3, 1, e1476.
https://doi.org/10.1371/journal.pone.0001476
PMid:18213384 PMCid:PMC2194920

Fried, L.E. and Arbiser, J.L. (2009). Honokiol, a Multifunctional Antiangiogenic and Antitumor Agent, Antioxidants & Redox Signaling 11, 5, 1139-1148.
https://doi.org/10.1089/ars.2009.2440
PMid:19203212 PMCid:PMC2842137

Fuchs, S.Y., Adler, V., Buschmann, T., Yin, Z., Wu, X., Jones, S.N. and Ronai, Z.e. (1998). JNK targets p53 ubiquitination and degradation in nonstressed cells, Genes & Development 12, 17, 2658-2663.
https://doi.org/10.1101/gad.12.17.2658
PMid:9732264 PMCid:PMC317120

Fuchs, S.Y., Adler, V., Pincus, M.R. and Ronai, Z.e. (1998). MEKK1/JNK signaling stabilizes and activates p53, Proceedings of the National Academy of Sciences 95, 18, 10541-10546.
https://doi.org/10.1073/pnas.95.18.10541
PMid:9724739 PMCid:PMC27930

Fulda, S. (2008). Betulinic acid for cancer treatment and prevention, Int. J. Mol. Sci. 9, 6, 1096-1107.
https://doi.org/10.3390/ijms9061096
PMid:19325847 PMCid:PMC2658785

Fulda, S., Jeremias, I., Steiner, H.H., Pietsch, T. and Debatin, K.M. (1999). Betulinic acid: A new cytotoxic agent against malignant brain-tumor cells, International Journal of Cancer 82, 3, 435-441.
https://doi.org/10.1002/(SICI)1097-0215(19990730)82:3<435::AID-IJC18>3.0.CO;2-1

Gali-Muhtasib, H., Diab-Assaf, M., Boltze, C., Al-Hmaira, J., Hartig, R., Roessner, A., Schneider-Stock, R., Gali-Muhtasib, H., Diab-Assaf, M., Boltze, C., Al-Hmaira, J., Hartig, R., Roessner, A. and Schneider-Stock, R. (2004). Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism, International Journal of Oncology 25, 4, 857-866.

Gali-Muhtasib, H.U., Kheir, W.G.A., Kheir, L.A., Darwiche, N. and Crooks, P.A. (2004). Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes, Anti-cancer drugs 15, 4, 389-399.
https://doi.org/10.1097/00001813-200404000-00012
PMid:15057144

Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., Castedo, M. and Kroemer, G. (2011). Molecular mechanisms of cisplatin resistance, Oncogene 31, 15, 1869-1883.
https://doi.org/10.1038/onc.2011.384
PMid:21892204

Garmann, D., Warnecke, A., Kalayda, G.V., Kratz, F. and Jaehde, U. (2008). Cellular accumulation and cytotoxicity of macromolecular platinum complexes in cisplatin-resistant tumor cells, J Controlled Release 131, 2, 100-106.
https://doi.org/10.1016/j.jconrel.2008.07.017
PMid:18691617

Giammanco, M., Di Majo, D., La Guardia, M., Aiello, S., Crescimannno, M., Flandina, C., Tumminello, F.M. and Leto, G. (2015). Vitamin D in cancer chemoprevention, Pharmaceutical Biology 53, 10, 1399-1434.
https://doi.org/10.3109/13880209.2014.988274
PMid:25856702

Gibellini, L., Pinti, M., Nasi, M., De Biasi, S., Roat, E., Bertoncelli, L. and Cossarizza, A. (2010). Interfering with ROS metabolism in cancer cells: the potential role of quercetin, Cancers 2, 1288-1311.
https://doi.org/10.3390/cancers2021288
PMid:24281116 PMCid:PMC3835130

Golkar, L., Ding, X.Z., Ujiki, M.B., Salabat, M.R., Kelly, D.L., Scholtens, D., Fought, A.J., Bentrem, D.J., Talamonti, M.S., Bell, R.H., Adrian, T.E., Golkar, L., Ding, X.-Z., Ujiki, M.B., Salabat, M.R., Kelly, D.L., Scholtens, D., Fought, A.J., Bentrem, D.J., Talamonti, M.S., Bell, R.H. and Adrian, T.E. (2007). Resveratrol inhibits pancreatic cancer cell proliferation through transcriptional induction of macrophage inhibitory cytokine-1, J Surg Res 138, 2, 163-169.
https://doi.org/10.1016/j.jss.2006.05.037
PMid:17257620

Granado-Serrano, A.B., Martín, M.A., Bravo, L., Goya, L. and Ramos, S. (2006). Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2), The Journal of nutrition 136, 11, 2715-2721.
https://doi.org/10.1093/jn/136.11.2715
PMid:17056790

Grivennikov, S.I., Greten, F.R. and Karin, M. (2010). Immunity, inflammation, and cancer, Cell 140, 6, 883-899.
https://doi.org/10.1016/j.cell.2010.01.025
PMid:20303878 PMCid:PMC2866629

Guo, Y.-B., Bao, X.-J., Xu, S.-B., Zhang, X.-D. and Liu, H.-Y. (2015). Honokiol induces cell cycle arrest and apoptosis via p53 activation in H4 human neuroglioma cells, International Journal of Clinical and Experimental Medicine 8, 5, 7168-7175.

Hahn, W.C. and Weinberg, R.A. (2002). Rules for making human tumor cells, New England Journal of Medicine 347, 20, 1593-1603.
https://doi.org/10.1056/NEJMra021902
PMid:12432047

Haldar, S., Jena, N. and Croce, C.M. (1995). Inactivation of Bcl-2 by phosphorylation, Proceedings of the National Academy of Sciences of the United States of America 92, 10, 4507-4511.
https://doi.org/10.1073/pnas.92.10.4507
PMid:7753834 PMCid:PMC41973

Hanahan, D. and Weinberg, R.A. (2000). The hallmarks of cancer, Cell (Cambridge, Mass.) 100, 1, 57-70.
https://doi.org/10.1016/S0092-8674(00)81683-9

Harbour, J.W. and Dean, D.C. (2000). The Rb/E2F pathway: expanding roles and emerging paradigms.
https://doi.org/10.1101/gad.813200
PMid:11018009

Hartwell, L.H. and Kastan, M.B. (1994). Cell cycle control and cancer, Science (Washington, D. C.) 266, 5192, 1821-1828.
https://doi.org/10.1126/science.7997877
PMid:7997877

He, X., Smeets, R.L., Koenen, H.J.P.M., Vink, P.M., Wagenaars, J., Boots, A.M.H. and Joosten, I. (2011). Mycophenolic Acid-Mediated Suppression of Human CD4+ T Cells: More Than Mere Guanine Nucleotide Deprivation, American Journal of Transplantation 11, 3, 439-449.
https://doi.org/10.1111/j.1600-6143.2010.03413.x
PMid:21342445

HemaIswarya, S. and Doble, M. (2006). Potential synergism of natural products in the treatment of cancer, Phytother Res 20, 4, 239-249.
https://doi.org/10.1002/ptr.1841
PMid:16557604

Holzer, A.K. and Howell, S.B. (2006). The internalization and degradation of human copper transporter 1 following cisplatin exposure, Cancer Research 66, 22, 10944-10952.
https://doi.org/10.1158/0008-5472.CAN-06-1710
PMid:17108132

Holzer, A.K., Manorek, G.H. and Howell, S.B. (2006). Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin, Molecular Pharmacology 70, 4, 1390-1394.
https://doi.org/10.1124/mol.106.022624
PMid:16847145

Hu, Y., Rahlfs, S., Mersch-Sundermann, V., Becker, K., Hu, Y., Rahlfs, S., Mersch-Sundermann, V. and Becker, K. (2007). Resveratrol modulates mRNA transcripts of genes related to redox metabolism and cell proliferation in non-small-cell lung carcinoma cells, Biol Chem 388, 2, 207-219.
https://doi.org/10.1515/BC.2007.023

Hung, J.-Y., Hsu, Y.-L., Li, C.-T., Ko, Y.-C., Ni, W.-C., Huang, M.-S. and Kuo, P.-L. (2009). 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells, Journal of agricultural and food chemistry 57, 20, 9809-9816.
https://doi.org/10.1021/jf902315e
PMid:19799425

Ishiguro, K., Ando, T., Maeda, O., Ohmiya, N., Niwa, Y., Kadomatsu, K. and Goto, H. (2007). Ginger ingredients reduce viability of gastric cancer cells via distinct mechanisms, Biochemical and biophysical research communications 362, 1, 218-223.
https://doi.org/10.1016/j.bbrc.2007.08.012
PMid:17706603

Ishikawa, T., Bao, J.-J., Yamane, Y., Akimaru, K., Frindrich, K., Wright, C.D. and Kuo, M.T. (1996). Coordinated induction of MRP/GS-X pump and γ-glutamylcysteine synthetase by heavy metals in human leukemia cells, Journal of Biological Chemistry 271, 25, 14981-14988.
https://doi.org/10.1074/jbc.271.25.14981
PMid:8663001

Ittiudomrak, T., Puthong, S., Roytrakul, S. and Chanchao, C. (2019). alpha-Mangostin and Apigenin Induced Cell Cycle Arrest and Programmed Cell Death in SKOV-3 Ovarian Cancer Cells, Toxicol 35, 2, 167-179.
https://doi.org/10.5487/TR.2019.35.2.167
PMid:31015899 PMCid:PMC6467359

Jaiswal, A., Marlow, B., Gupta, N. and Narayan, S. (2002). Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells, Oncogene 21, 55, 8414-8427.
https://doi.org/10.1038/sj.onc.1205947
PMid:12466962

Jeong, J.-H., An, J.Y., Kwon, Y.T., Rhee, J.G. and Lee, Y.J. (2008). Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression, Journal of Cellular Biochemistry 106, 1, 73-82.
https://doi.org/10.1002/jcb.21977
PMid:19009557 PMCid:PMC2736626

Jung, Y.H., Heo, J., Lee, Y.J., Kwon, T.K. and Kim, Y.H. (2010). Quercetin enhances TRAIL-induced apoptosis in prostate cancer cells via increased protein stability of death receptor 5, Life sciences 86, 9, 351-357.
https://doi.org/10.1016/j.lfs.2010.01.008
PMid:20096292 PMCid:PMC3003259

Kane, L.P., Shapiro, V.S., Stokoe, D. and Weiss, A. (1999). Induction of NF-κB by the Akt/PKB kinase, Current Biology 9, 11, 601-S601.
https://doi.org/10.1016/S0960-9822(99)80265-6

Karin, M. (1996). The regulation of AP-1 activity by mitogen-activated protein kinases, Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 351, 1336, 127-134.
https://doi.org/10.1098/rstb.1996.0008
PMid:8650258

Kasibhatla, S. and Tseng, B. (2003). Why target apoptosis in cancer treatment?, Molecular Cancer Therapeutics 2, 6, 573-580.

Kaye, S. (1996). Paclitaxel in Cancer Treatment, British journal of cancer 73, 3, 414.
https://doi.org/10.1038/bjc.1996.72
PMCid:PMC2074423

Kazi, A., Daniel, K.G., Smith, D.M., Kumar, N.B. and Dou, Q.P. (2003). Inhibition of the proteasome activity, a novel mechanism associated with the tumor cell apoptosis-inducing ability of genistein, Biochemical Pharmacology 66, 6, 965-976.
https://doi.org/10.1016/S0006-2952(03)00414-3

Kelland, L.R. (2000). Preclinical perspectives on platinum resistance, Drugs 59 Suppl 4, 1-8; discussion 37-38.
https://doi.org/10.2165/00003495-200059004-00001
PMid:10864225

Kim, J.Y., Kim, E.H., Park, S.S., Lim, J.H., Kwon, T.K. and Choi, K.S. (2008). Quercetin sensitizes human hepatoma cells to TRAIL-induced apoptosis via Sp1-mediated DR5 up-regulation and proteasome-mediated c-FLIPS down-regulation, Journal of Cellular Biochemistry 105, 6, 1386-1398.
https://doi.org/10.1002/jcb.21958
PMid:18980244

Kim, M.-K., Kim, K., Han, J.Y., Lim, J.M. and Song, Y.S. (2011). Modulation of inflammatory signaling pathways by phytochemicals in ovarian cancer, Genes and Nutrition 6, 2, 109-115.
https://doi.org/10.1007/s12263-011-0209-y
PMid:21484164 PMCid:PMC3092902

Kim, S.-H. and Choi, K.-C. (2013). Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models, Toxicol 29, 4, 229-234.
https://doi.org/10.5487/TR.2013.29.4.229
PMid:24578792 PMCid:PMC3936174

Kishimoto, S., Kawazoe, Y., Ikeno, M., Saitoh, M., Nakano, Y., Nishi, Y., Fukushima, S. and Takeuchi, Y. (2006). Role of Na+, K+-ATPase alpha1 subunit in the intracellular accumulation of cisplatin, Cancer Chemother Pharmacol 57, 1, 84-90.
https://doi.org/10.1007/s00280-005-0003-x
PMid:16044341

Komatsu, M., Sumizawa, T., Mutoh, M., Chen, Z.S., Terada, K., Furukawa, T., Yang, X.L., Gao, H., Miura, N., Sugiyama, T. and Akiyama, S. (2000). Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance, Cancer Research 60, 5, 1312-1316.

Kumar, G., Mittal, S., Sak, K. and Tuli, H.S. (2016). Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives, Life Sci 148, 313-328.
https://doi.org/10.1016/j.lfs.2016.02.022
PMid:26876915

Lee, T.-J., Kim, O.H., Kim, Y.H., Lim, J.H., Kim, S., Park, J.-W. and Kwon, T.K. (2006). Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells, Cancer letters 240, 2, 234-242.
https://doi.org/10.1016/j.canlet.2005.09.013
PMid:16274926

Lee, Y.-K., Hwang, J.-T., Kwon Dae, Y., Surh, Y.-J. and Park Ock, J. (2010). Induction of apoptosis by quercetin is mediated through AMPKalpha1/ASK1/p38 pathway, Cancer letters 292, 2, 228-236.
https://doi.org/10.1016/j.canlet.2009.12.005
PMid:20083342

Lengyel, E. (2010). Ovarian cancer development and metastasis,  1, 3, 1053-1064.
https://doi.org/10.2353/ajpath.2010.100105
PMid:20651229 PMCid:PMC2928939

Li, T.-Y. and Chiang, B.-H. (2017). 6-shogaol induces autophagic cell death then triggered apoptosis in colorectal adenocarcinoma HT-29 cells, Biomedicine & Pharmacotherapy 93, 208-217.
https://doi.org/10.1016/j.biopha.2017.06.038
PMid:28641163

Lin, R.J., Wu, I.J., Hong, J.Y., Liu, B.H., Liang, R.Y., Yuan, T.M. and Chuang, S.M. (2018). Capsaicin-induced TRIB3 upregulation promotes apoptosis in cancer cells, Cancer Manag Res 10, 4237-4248.
https://doi.org/10.2147/CMAR.S162383
PMid:30323679 PMCid:PMC6177521

Lin, Y.G., Kunnumakkara, A.B., Nair, A., Merritt, W.M., Han, L.Y., Armaiz-Pena, G.N., Kamat, A.A., Spannuth, W.A., Gershenson, D.M., Lutgendorf, S.K., Aggarwal, B.B. and Sood, A.K. (2007). Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway, Clinical cancer research : an official journal of the American Association for Cancer Research 13, 11, 3423-3430.
https://doi.org/10.1158/1078-0432.CCR-06-3072
PMid:17545551

Ling, H., Yang, H., Tan, S.H., Chui, W.K. and Chew, E.H. (2010). 6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation, British journal of pharmacology 161, 8, 1763-1777.
https://doi.org/10.1111/j.1476-5381.2010.00991.x
PMid:20718733 PMCid:PMC3010581

Liu, H., Zang, C., Emde, A., Planas-Silva, M.D., Rosche, M., Kühnl, A., Schulz, C.-O., Elstner, E., Possinger, K. and Eucker, J. (2008). Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer, European Journal of Pharmacology 591, 1, 43-51.
https://doi.org/10.1016/j.ejphar.2008.06.026
PMid:18588872

Liu, Q., Peng, Y.-B., Zhou, P., Qi, L.-W., Zhang, M., Gao, N., Liu, E.H. and Li, P. (2013). 6-Shogaol induces apoptosis in human leukemia cells through a process involving caspase-mediated cleavage of eIF2α, Molecular Cancer 12, 135-135.
https://doi.org/10.1186/1476-4598-12-135
PMid:24215632 PMCid:PMC4176122

Lowe, S.W., Cepero, E. and Evan, G. (2004). Intrinsic tumor suppression, Nature (London, United Kingdom) 432, 7015, 307-315.
https://doi.org/10.1038/nature03098
PMid:15549092

Lugli, E., Troiano, L., Ferraresi, R., Roat, E., Prada, N., Nasi, M., Pinti, M., Cooper, E.L. and Cossarizza, A. (2005). Characterization of cells with different mitochondrial membrane potential during apoptosis, Cytometry Part A 68, 1, 28-35.
https://doi.org/10.1002/cyto.a.20188
PMid:16184612

Majdalawieh, A.F., Fayyad, M.W. and Nasrallah, G.K. (2017). Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa, Crit Rev Food Sci Nutr 57, 18, 3911-3928.
https://doi.org/10.1080/10408398.2016.1277971
PMid:28140613

Marquez, R.T., Baggerly, K.A., Patterson, A.P., Liu, J., Broaddus, R., Frumovitz, M., Atkinson, E.N., Smith, D.I., Hartmann, L., Fishman, D., Berchuck, A., Whitaker, R., Gershenson, D.M., Mills, G.B., Bast, R.C., Jr. and Lu, K.H. (2005). Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon, Clinical Cancer Research 11, 17, 6116-6126.
https://doi.org/10.1158/1078-0432.CCR-04-2509
PMid:16144910

Marsden, D.E., Friedlander, M. and Hacker, N.F. (2000). Current management of epithelial ovarian carcinoma: a review, Semin Surg Oncol 19, 1, 11-19.
https://doi.org/10.1002/1098-2388(200007/08)19:1<11::AID-SSU3>3.0.CO;2-3

Mathieson, R.A. and Kitts, W.D. (1980). Binding of phytoestrogen and estradiol-17β by cytoplasmic receptors in the pituitary gland and hypothalamus of the ewe, Journal of Endocrinology 85, 2, 317-325.
https://doi.org/10.1677/joe.0.0850317
PMid:7400718

Mattson David, M., Ahmad Iman, M., Dayal, D., Parsons Arlene, D., Aykin-Burns, N., Li, L., Orcutt Kevin, P., Spitz Douglas, R., Dornfeld Kenneth, J. and Simons Andrean, L. (2009). Cisplatin combined with zidovudine enhances cytotoxicity and oxidative stress in human head and neck cancer cells via a thiol-dependent mechanism, Free radical biology & medicine 46, 2, 232-237.
https://doi.org/10.1016/j.freeradbiomed.2008.10.023
PMid:18983911 PMCid:PMC2659778

Mazumder, M.E.H. (2013). Studies on New Tumour Active Palladium Complexes Targeted to Overcome Resistance in Ovarian Cancer PhD Thesis, University of Sydney, Australia.

Mazumder, M.E.H., Beale, P., Chan, C., Yu, J.Q. and Huq, F. (2012). Epigallocatechin gallate acts synergistically in combination with cisplatin and designed trans-palladiums in ovarian cancer cells, Anticancer Res 32, 11, 4851-4860.

McNeil, E.M. and Melton, D.W. (2012). DNA repair endonuclease ERCC1-XPF as a novel therapeutic target to overcome chemoresistance in cancer therapy, Nucleic acids research.
https://doi.org/10.1093/nar/gks818
PMid:22941649 PMCid:PMC3488251

Melet, A., Song, K., Bucur, O., Jagani, Z., Grassian, A.R. and Khosravi-Far, R. (2008). Apoptotic pathways in tumor progression and therapy, Advances in Experimental Medicine and Biology 615, Programmed Cell Death in Cancer Progression and Therapy, 47-79.
https://doi.org/10.1007/978-1-4020-6554-5_4
PMid:18437891

Monguilhott Dalmarco, E., Mendes de Córdova, C.M. and Fröde, T.S. (2011). Evidence of an anti-inflammatory effect of mycophenolate mofetil in a murine model of pleurisy, Experimental Lung Research 37, 7, 399-407.
https://doi.org/10.3109/01902148.2011.570416
PMid:21777147

Morales, R.R., Agrapart, V., Mencacci, C., Moretti, C., Frajese, G. and Frajese, G.V. (2008). Functional re-differentiation of prostate cancer derived cell lines by the anti-tumoral drug Mycophenolic Acid (MPA), European Journal of Cancer Supplements 6, 9, 146.
https://doi.org/10.1016/S1359-6349(08)71737-3

Morgan, D.O. (1997). Cyclin-dependent kinases: engines, clocks, and microprocessors, Annual Review of Cell and Developmental Biology 13, 261-291.
https://doi.org/10.1146/annurev.cellbio.13.1.261
PMid:9442875

Narod, S.A. (2002). Modifiers of risk of hereditary breast and ovarian cancer, Nature Reviews Cancer 2, 2, 113-123.
https://doi.org/10.1038/nrc726
PMid:12635174

Nessa, M.U. (2013). Studies on Combinations Between Platinum Drugs and Phytochemicals in Ovarian Tumour Models, University of Sydney, Australia.

Nessa, M.U., Beale, P., Chan, C., Yu, J.Q. and Huq, F. (2011). Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models, Anticancer Res 31, 11, 3789-3797.

Nessa, M.U., Beale, P., Chan, C., Yu, J.Q. and Huq, F. (2012). Combinations of resveratrol, cisplatin and oxaliplatin applied to human ovarian cancer cells, Anticancer Res 32, 1, 53-59.

Nessa, M.U., Beale, P., Chan, C., Yu, J.Q. and Huq, F. (2012). Studies on combination of platinum drugs cisplatin and oxaliplatin with phytochemicals anethole and curcumin in ovarian tumour models, Anticancer Res 32, 11, 4843-4850.

Noguchi, K., Kitanaka, C., Yamana, H., Kokubu, A., Mochizuki, T. and Kuchino, Y. (1999). Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase, Journal of Biological Chemistry 274, 46, 32580-32587.
https://doi.org/10.1074/jbc.274.46.32580
PMid:10551811

Norbury, C. and Nurse, P. (1992). Animal cell cycles and their control, Annual Review of Biochemistry 61, 441-470.
https://doi.org/10.1146/annurev.bi.61.070192.002301
PMid:1497317

Norman, A.W. (2008). From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health, The American journal of clinical nutrition 88, 2, 491S-499S.
https://doi.org/10.1093/ajcn/88.2.491S
PMid:18689389

Nurse, P., Masui, Y. and Hartwell, L. (1998). Understanding the cell cycle: past, present and future, Nature Medicine (New York) 4, 10, 1103-1106.
https://doi.org/10.1038/2594
PMid:9771732

Ok, S. and Jeong, W.-S. (2012). Optimization of Extraction Conditions for the 6-Shogaol-rich Extract from Ginger (Zingiber officinale Roscoe), Preventive Nutrition and Food Science 17, 2, 166-171.
https://doi.org/10.3746/pnf.2012.17.2.166
PMid:24471079 PMCid:PMC3866747

Okura, A., Arakawa, H., Oka, H., Yoshinari, T. and Monden, Y. (1988). Effect of genistein on topoisomerase activity and on the growth of [Val 12]Ha-ras-transformed NIH 3T3 cells, Biochemical and Biophysical Research Communications 157, 1, 183-189.
https://doi.org/10.1016/S0006-291X(88)80030-5

Oyagbemi, A., Saba, A. and Azeez, O. (2010). Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action, Indian journal of cancer 47, 1, 53.
https://doi.org/10.4103/0019-509X.58860
PMid:20071791

Oyagbemi, A.A., Saba, A.B. and Azeez, O.I. (2010). Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action, Indian J Cancer 47, 1, 53-58.
https://doi.org/10.4103/0019-509X.58860
PMid:20071791

Park, B.S., Lee, K.G., Shibamoto, T., Lee, S.E. and Takeoka, G.R. (2003). Antioxidant activity and characterization of volatile constituents of Taheebo (Tabebuia impetiginosa Martius ex DC), J Agric Food Chem 51, 1, 295-300.
https://doi.org/10.1021/jf020811h
PMid:12502424

Park, M.-T. and Lee, S.-J. (2003). Cell cycle and cancer, Journal of Biochemistry and Molecular Biology 36, 1, 60-65.
https://doi.org/10.5483/BMBRep.2003.36.1.060
PMid:12542976

Ravindran, J., Prasad, S. and Aggarwal Bharat, B. (2009). Curcumin and cancer cells: how many ways can curry kill tumor cells selectively?, Aaps J 11, 3, 495-510.
https://doi.org/10.1208/s12248-009-9128-x
PMid:19590964 PMCid:PMC2758121

Ray, A., Vasudevan, S. and Sengupta, S. (2015). 6-Shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of Notch signaling pathway and induction of autophagic cell death, PloS one 10, 9, e0137614.
https://doi.org/10.1371/journal.pone.0137614
PMid:26355461 PMCid:PMC4565635

Rocha, C.R.R., Silva, M.M., Quinet, A., Cabral-Neto, J.B. and Menck, C.F.M. (2018). DNA repair pathways and cisplatin resistance: an intimate relationship, Clinics 73, suppl 1, e478s.
https://doi.org/10.6061/clinics/2018/e478s

Roepke, M., Diestel, A., Bajbouj, K., Walluscheck, D., Schonfeld, P., Roessner, A., Schneider-Stock, R. and Gali-Muhtasib, H. (2007). Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells, Cancer biology & therapy 6, 2, 160-169.
https://doi.org/10.4161/cbt.6.2.3575
PMid:17218778

Rosell, R., Taron, M., Barnadas, A., Scagliotti, G., Sarries, C. and Roig, B. (2003). Nucleotide excision repair pathways involved in Cisplatin resistance in non-small-cell lung cancer, Cancer Control 10, 4, 297-305.
https://doi.org/10.1177/107327480301000404
PMid:12915808

Rovirosa, J., Diaz-Marrero, A., Darías, J., Painemal, K. and San Martín, A. (2006). Secondary metabolites from marine Penicillium brevicompactum, Journal of the Chilean Chemical Society 51, 1, 775-778.
https://doi.org/10.4067/S0717-97072006000100004

Sa, G. and Das, T. (2008). Anti cancer effects of curcumin: cycle of life and death, Cell Division 3, No pp given.
https://doi.org/10.1186/1747-1028-3-14
PMid:18834508 PMCid:PMC2572158

Sablina Anna, A., Budanov Andrei, V., Ilyinskaya Galina, V., Agapova Larissa, S., Kravchenko Julia, E. and Chumakov Peter, M. (2005). The antioxidant function of the p53 tumor suppressor, Nature medicine 11, 12, 1306-1313.
https://doi.org/10.1038/nm1320
PMid:16286925 PMCid:PMC2637821

Saha, A., Blando, J., Silver, E., Beltran, L., Sessler, J. and DiGiovanni, J. (2014). 6-Shogaol from Dried Ginger Inhibits Growth of Prostate Cancer Cells Both and through Inhibition of STAT3 and NF-κB Signaling, Cancer Prevention Research 7, 6, 627-638.
https://doi.org/10.1158/1940-6207.CAPR-13-0420
PMid:24691500

Samimi, G., Safaei, R., Katano, K., Holzer, A.K., Rochdi, M., Tomioka, M., Goodman, M. and Howell, S.B. (2004). Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells, Clinical Cancer Research 10, 14, 4661-4669.
https://doi.org/10.1158/1078-0432.CCR-04-0137
PMid:15269138

Samuel, T., Fadlalla, K., Mosley, L., Katkoori, V., Turner, T. and Manne, U. (2012). Dual-mode interaction between quercetin and DNA-damaging drugs in cancer cells, Anticancer Res 32, 1, 61-71.

Sánchez, A.M., Malagarie-Cazenave, S., Olea, N., Vara, D., Chiloeches, A. and Díaz-Laviada, I. (2007). Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation, Apoptosis 12, 11, 2013-2024.
https://doi.org/10.1007/s10495-007-0119-z
PMid:17828457

Sánchez, A.M., Martínez-Botas, J., Malagarie-Cazenave, S., Olea, N., Vara, D., Lasunción, M.A. and Díaz-Laviada, I. (2008). Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a microarray study, Biochemical and Biophysical Research Communications 372, 4, 785-791.
https://doi.org/10.1016/j.bbrc.2008.05.138
PMid:18533110

Sarkar, F.H. and Li, Y.-w. (2007). Targeting multiple signal pathways by chemopreventive agents for cancer prevention and therapy, Acta Pharmacologica Sinica 28, 9, 1305-1315.
https://doi.org/10.1111/j.1745-7254.2007.00689.x
PMid:17723164

Sarkar, F.H., Li, Y., Sarkar, F.H. and Li, Y. (2006). Using chemopreventive agents to enhance the efficacy of cancer therapy, Cancer Research 66, 7, 3347-3350.
https://doi.org/10.1158/0008-5472.CAN-05-4526
PMid:16585150

Satoh, H., Nishikawa, K., Suzuki, K., Asano, R., Virgona, N., Ichikawa, T., Hagiwara, K. and Yano, T. (2003). Genistein, a soy isoflavone, enhances necrotic-like cell death in a breast cancer cell treated with a chemotherapeutic agent, Research Communications in Molecular Pathology and Pharmacology 113-114, 149-158.

Schuijer, M., Berns, E.M., Schuijer, M. and Berns, E.M.J.J. (2003). TP53 and ovarian cancer, Hum Mutat 21, 3, 285-291.
https://doi.org/10.1002/humu.10181
PMid:12619114

Seo, S.S., Song, Y.S., Kang, D.-h., Park, I., Bang, Y.J., Kang, S.B. and Lee, H.P. (2004). Expression of cyclooxygenase-2 in association with clinicopathological prognostic factors and molecular markers in epithelial ovarian cancer, Gynecologic oncology 92, 3, 927-935.
https://doi.org/10.1016/j.ygyno.2003.11.055
PMid:14984962

Sexton, E., Van Themsche, C., LeBlanc, K., Parent, S., Lemoine, P., Asselin, E., Sexton, E., Van Themsche, C., LeBlanc, K., Parent, S., Lemoine, P. and Asselin, E. (2006). Resveratrol interferes with AKT activity and triggers apoptosis in human uterine cancer cells, Molecular Cancer 5, 45.
https://doi.org/10.1186/1476-4598-5-45
PMid:17044934 PMCid:PMC1626081

Sherr, C.J. (2000). The Pezcoller lecture: cancer cell cycles revisited, Cancer Research 60, 14, 3689-3695.

Sherr, C.J. and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression, Genes & Development 13, 12, 1501-1512.
https://doi.org/10.1101/gad.13.12.1501
PMid:10385618

Siddik, Z.H. (2003). Cisplatin: mode of cytotoxic action and molecular basis of resistance, Oncogene 22, 47, 7265-7279.
https://doi.org/10.1038/sj.onc.1206933
PMid:14576837

Singh, N., Nigam, M., Ranjan, V., Sharma, R., Balapure, A.K. and Rath, S.K. (2009). Caspase mediated enhanced apoptotic action of cyclophosphamide- and resveratrol-treated MCF-7 cells, Journal of Pharmacological Sciences 109, 4, 473-485.
https://doi.org/10.1254/jphs.08173FP
PMid:19372630

Singh, S., Khan, A.R. and Gupta, A.K. (2012). Role of glutathione in cancer pathophysiology and therapeutic interventions, Journal of Experimental Therapeutics and Oncology 9, 4, 303-316.

Solomon, L.A., Ali, S., Banerjee, S., Munkarah, A.R., Morris, R.T. and Sarkar, F.H. (2008). Sensitization of ovarian cancer cells to cisplatin by genistein: the role of NF-kappaB, J Ovarian Res 1, No pp given.
https://doi.org/10.1186/1757-2215-1-9
PMid:19025644 PMCid:PMC2611983

Sozzani, R., Maggio, C., Varotto, S., Canova, S., Bergounioux, C., Albani, D. and Cella, R. (2006). Interplay between Arabidopsis activating factors E2Fb and E2Fa in cell cycle progression and development, Plant Physiol 140, 4, 1355-1366.
https://doi.org/10.1104/pp.106.077990
PMid:16514015 PMCid:PMC1435807

Sun, X.-X., Dai, M.-S. and Lu, H. (2008). Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11, Journal of Biological Chemistry 283, 18, 12387-12392.
https://doi.org/10.1074/jbc.M801387200
PMid:18305114 PMCid:PMC2430998

Surh, Y.-J. (2003). Cancer chemoprevention with dietary phytochemicals, Nature Reviews Cancer 3, Copyright
https://doi.org/10.1038/nrc1189
PMid:14570043

(C) 2012 American Chemical Society (ACS). All Rights Reserved., 768-780.

Surowiak, P., Materna, V., Kaplenko, I., Spaczynski, M., Dolinska-Krajewska, B., Gebarowska, E., Dietel, M., Zabel, M. and Lage, H. (2006). ABCC2 (MRP2, cMOAT) can be localized in the nuclear membrane of ovarian carcinomas and correlates with resistance to cisplatin and clinical outcome, Clinical Cancer Research 12, 23, 7149-7158.
https://doi.org/10.1158/1078-0432.CCR-06-0564
PMid:17145840

Suzuki, K., Koike, H., Matsui, H., Ono, Y., Hasumi, M., Nakazato, H., Okugi, H., Sekine, Y., Oki, K. and Ito, K. (2002). Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3, International Journal of Cancer 99, 6, 846-852.
https://doi.org/10.1002/ijc.10428
PMid:12115487

Tan, B.S., Kang, O., Mai, C.W., Tiong, K.H., Khoo, A.S.-B., Pichika, M.R., Bradshaw, T.D. and Leong, C.-O. (2013). 6-Shogaol inhibits breast and colon cancer cell proliferation through activation of peroxisomal proliferator activated receptor γ (PPARγ), Cancer letters 336, 1, 127-139.
https://doi.org/10.1016/j.canlet.2013.04.014
PMid:23612072

Tan, X., Sidell, N., Mancini, A., Huang, R.-P., Wang, S., Horowitz, I.R., Liotta, D.C., Taylor, R.N. and Wieser, F. (2010). Multiple anticancer activities of EF24, a novel curcumin analog, on human ovarian carcinoma cells, Reproductive Sciences 17, 10, 931-940.
https://doi.org/10.1177/1933719110374239
PMid:20693500

Tan, Y.M., Yu, R. and Pezzuto, J.M. (2003). Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation, Clinical Cancer Research 9, 7, 2866-2875.

Tokar, E.J. and Webber, M.M. (2005). Chemoprevention of Prostate Cancer by Cholecalciferol (Vitamin D3): 25-hydroxylase (CYP27A1) in Human Prostate Epithelial Cells, Clinical & Experimental Metastasis 22, 3, 265.
https://doi.org/10.1007/s10585-005-8394-y
PMid:16158254

Tournier, C., Hess, P., Yang, D.D., Xu, J., Turner, T.K., Nimnual, A., Bar-Sagi, D., Jones, S.N., Flavell, R.A. and Davis, R.J. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway, Science 288, 5467, 870-874.
https://doi.org/10.1126/science.288.5467.870
PMid:10797012

Trachootham, D., Alexandre, J. and Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?, Nature reviews. Drug discovery 8, 7, 579-591.
https://doi.org/10.1038/nrd2803
PMid:19478820

Trachootham, D., Lu, W., Ogasawara, M.A., Valle, N.R.-D. and Huang, P. (2008). Redox Regulation of Cell Survival, Antioxid Redox Signal 10, 8, 1343-1374.
https://doi.org/10.1089/ars.2007.1957
PMid:18522489 PMCid:PMC2932530

Valent, P., Bonnet, D., De Maria, R., Lapidot, T., Copland, M., Melo, J.V., Chomienne, C., Ishikawa, F., Schuringa, J.J., Stassi, G., Huntly, B., Herrmann, H., Soulier, J., Roesch, A., Schuurhuis, G.J., Wohrer, S., Arock, M., Zuber, J., Cerny-Reiterer, S., Johnsen, H.E., Andreeff, M. and Eaves, C. (2012). Cancer stem cell definitions and terminology: the devil is in the details, Nat Rev Cancer 12, 11, 767-775.
https://doi.org/10.1038/nrc3368
PMid:23051844

Wang, Q.-E., Milum, K., Han, C., Huang, Y.-W., Wani, G., Thomale, J. and Wani, A.A. (2011). Differential contributory roles of nucleotide excision and homologous recombination repair for enhancing cisplatin sensitivity in human ovarian cancer cells, Molecular Cancer 10, 24.
https://doi.org/10.1186/1476-4598-10-24
PMid:21385444 PMCid:PMC3064653

Wang, T., Chen, F., Chen, Z., Wu, Y.-F., Xu, X.-L., Zheng, S. and Hu, X. (2004). Honokiol induces apoptosis through p53-independent pathway in human colorectal cell line RKO, World Journal of Gastroenterology 10, 15, 2205-2208.
https://doi.org/10.3748/wjg.v10.i15.2205
PMid:15259066 PMCid:PMC4724979

Wei, Y., Pu, X. and Zhao, L. (2017). Preclinical studies for the combination of paclitaxel and curcumin in cancer therapy (Review), Oncol Rep 37, 6, 3159-3166.
https://doi.org/10.3892/or.2017.5593
PMid:28440434

Williamson, J.M., Boettcher, B. and Meister, A. (1982). Intracellular cysteine delivery system that protects against toxicity by promoting glutathione synthesis, Proceedings of the National Academy of Sciences of the United States of America 79, 20, 6246-6249.
https://doi.org/10.1073/pnas.79.20.6246
PMid:6959113 PMCid:PMC347097

Wu, S. and Sun, J. (2011). Vitamin D, Vitamin D Receptor, and Macroautophagy in Inflammation and Infection, Discovery Medicine 11, 59, 325-335.

Xie, D., Zheng, G.Z., Xie, P., Zhang, Q.H., Lin, F.X., Chang, B., Hu, Q.X., Du, S.X. and Li, X.D. (2017). Antitumor activity of resveratrol against human osteosarcoma cells: a key role of Cx43 and Wnt/beta-catenin signaling pathway, Oncotarget 8, 67, 111419-111432.
https://doi.org/10.18632/oncotarget.22810
PMid:29340064 PMCid:PMC5762332

Yamamoto, K., Ichijo, H. and Korsmeyer, S.J. (1999). BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M, Molecular and cellular biology 19, 12, 8469-8478.
https://doi.org/10.1128/MCB.19.12.8469
PMid:10567572 PMCid:PMC84954

Yang, J.H., Hsia, T.C., Kuo, H.M., Chao, P.D.L., Chou, C.C., Wei, Y.H. and Chung, J.G. (2006). Inhibition of lung cancer cell growth by quercetin glucuronides via G2/M arrest and induction of apoptosis, Drug metabolism and disposition 34, 2, 296-304.
https://doi.org/10.1124/dmd.105.005280
PMid:16280456

Yang, K., Lamprecht, S.A., Shinozaki, H., Fan, K., Yang, W., Newmark, H.L., Kopelovich, L., Edelmann, W., Jin, B. and Gravaghi, C. (2008). Dietary calcium and cholecalciferol modulate cyclin D1 expression, apoptosis, and tumorigenesis in intestine of adenomatous polyposis coli1638N/+ mice, The Journal of nutrition 138, 9, 1658-1663.
https://doi.org/10.1093/jn/138.9.1658
PMid:18716166

Yang, P., Ebbert Jon, O., Sun, Z. and Weinshilboum Richard, M. (2006). Role of the glutathione metabolic pathway in lung cancer treatment and prognosis: a review, Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24, 11, 1761-1769.
https://doi.org/10.1200/JCO.2005.02.7110
PMid:16603718

Zhan, Q., Wang, C. and Ngai, S. (2013). Ovarian cancer stem cells: a new target for cancer therapy, Biomed Res Int 2013, 916819.
https://doi.org/10.1155/2013/916819
PMid:23509802 PMCid:PMC3581273

Zheng, A.W., Chen, Y.Q., Zhao, L.Q. and Feng, J.G. (2017). Myricetin induces apoptosis and enhances chemosensitivity in ovarian cancer cells, Oncol 13, 6, 4974-4978.
https://doi.org/10.3892/ol.2017.6031
PMid:28588737 PMCid:PMC5452908

Zheng, Y., Liu, H. and Liang, Y. (2017). Genistein exerts potent antitumour effects alongside anaesthetic, propofol, by suppressing cell proliferation and nuclear factor-kappaB-mediated signalling and through upregulating microRNA-218 expression in an intracranial rat brain tumour model, J Pharm Pharmacol 69, 11, 1565-1577.
https://doi.org/10.1111/jphp.12781
PMid:28776680

Zheng, Z.-H., Yang, Y., Lu, X.-H., Zhang, H., Shui, X.-X., Liu, C., He, X.-B., Jiang, Q., Zhao, B.-H. and Si, S.-Y. (2011). Mycophenolic acid induces adipocyte-like differentiation and reversal of malignancy of breast cancer cells partly through PPARγ, European Journal of Pharmacology 658, 1, 1-8.
https://doi.org/10.1016/j.ejphar.2011.01.068
PMid:21349264

Zhou, J., Zhang, C., Zhou, B. and Jiang, D. (2019). miR-183 modulated cell proliferation and apoptosis in ovarian cancer through the TGF-beta/Smad4 signaling pathway, Int J Mol Med 43, 4, 1734-1746.
https://doi.org/10.3892/ijmm.2019.4082

Zong, W.-X., Edelstein, L.C., Chen, C., Bash, J. and Gélinas, C. (1999). The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNFα-induced apoptosis, Genes Dev. 13, 4, 382-387.
https://doi.org/10.1101/gad.13.4.382
PMid:10049353 PMCid:PMC316475

PDF
Supplementary Material
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



16
Save
0
Citation
1145
View
0
Share