Dose Dependent Synergism from Combination of Platinum Drugs with Curcumin against Colorectal Cancer Cell Lines
Hana Bali1, Jun Qing Yu1, Philip Beale2, and Fazlul Huq3
Journal of Angiotherapy 4(1) 176-193 https://doi.org/10.25163/angiotherapy.41210611810120920
Submitted: 18 August 2020 Revised: 04 September 2020 Published: 12 September 2020
Ox in combination Cur demonstrated very high synergism against HT-29 and Caco-2 cell lines.
Abstract
Introduction: Colorectal cancer is the fourth most common cause of cancer mortality. More than 41265 new cases of colorectal cancer were detected and around 15903 colorectal cancer deaths occurred in year 2014 worldwide according to the statistical study from the cancer research. Chemotherapy is still in the main stream of the management of colorectal cancer along with surgery and radiotherapy. Aim: The objective of the present study was to investigate the activity of curcumin in combination with platinum drugs against colorectal cancer models (HT-29, Caco-2, LIM-1215 and LIM-2405). Methods: IC50 values of cisplatin (Cs) , oxaliplatin (Ox), and curcumin (Cur) were determined against four human colorectal cancer cell lines using MTT reduction assay. Combined drug activity was determined as a factor of sequence of administration (0/0, 0/4 and 4/0 h) and added concentrations. DNA binding and proteomics were carried out to obtain insight into molecular mechanisms of drug action. Results: Oxaliplatin in combination with curcumin produced strong synergism in the tested cell lines. Cellular accumulation study, platinum-DNA binding study and DNA damage study revealed the mechanism of combined drug affects. Upregulation of K1C18, GRP78, IDHC and Cofilin-1 proteins was considered to be associated with the synergistic combined effects of oxaliplatin with curcumin. Conclusion: Ox in combination Cur demonstrated very high synergism against HT-29 and Caco-2 cell lines. Synergism from Ox with Cur may beassociated with greater platinum-DNA binding. Proteomics revealed that the elevated expressions of K1C18, GRP78, IDHC and Cofilin1 may be responsible for the synergistic activity obtained from the combination of Ox with Cur.
References
Al-Eisawi, Z., P. Beale, et al. (2013). "Carboplatin and oxaliplatin in sequenced combination with bortezomib in ovarian tumour models." Journal of ovarian research 6(1), 78.
https://doi.org/10.1186/1757-2215-6-78
PMid:24209693 PMCid:PMC3826510
Al-Eisawi, Z., P. Beale, et al. (2016). "Changes in the in vitro activity of platinum drugs when administered in two aliquots." BMC cancer 16(1), 688.
https://doi.org/10.1186/s12885-016-2731-1
PMid:27566066 PMCid:PMC5002105
Alam, M. N., J. Q. Yu, et al. (2020). "Cisplatin in combination with emetine and patulin showed dose and sequence dependent synergism against ovarian cancer." Synergy 10, 100060.
https://doi.org/10.1016/j.synres.2019.100060
Alam, M. N., J. Q. Yu, et al. (2020). "Dose and sequence dependent synergism from the combination of oxaliplatin with emetine and patulin against colorectal cancer." Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 20(2), 264-273.
https://doi.org/10.2174/1871520619666191021112042
PMid:31736447
Arzuman, L., P. Beale, et al. (2016). "Synthesis of tris (quinoline) monochloroplatinum (II) Chloride and its Activity Alone and in Combination with Capsaicin and Curcumin in Human Ovarian Cancer Cell Lines." Anticancer research 36(6), 2809-2818.
Bernstein, B. W. and J. R. Bamburg (2010). "ADF/cofilin: a functional node in cell biology." Trends in cell biology 20(4), 187-195.
https://doi.org/10.1016/j.tcb.2010.01.001
PMid:20133134 PMCid:PMC2849908
Björklund, B. (1978). Tissue polypeptide antigen (TPA): biology, biochemistry, improved assay methodology, clinical significance in cancer and other conditions, and future outlook. Laboratory testing for cancer, Karger Publishers. 22, 16-31.
https://doi.org/10.1159/000401148
Björklund, B. and V. Björklund (1957). "Antigenicity of pooled human malignant and normal tissues by cyto-immunological technique: presence of an insoluble, heat-labile tumor antigen." International Archives of Allergy and Immunology 10(3), 153-184.
https://doi.org/10.1159/000228374
Buddaseth, S., W. Göttmann, et al. (2013). "Dysregulation of cell cycle control caused by overexpression of the oncogene pp32r1 (ANP32C) and the Tyr> His mutant pp32r1Y140H." Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1833(5), 1212-1221.
https://doi.org/10.1016/j.bbamcr.2013.02.001
PMid:23403278
Bühler, H. and G. Schaller (2005). "Transfection of keratin 18 gene in human breast cancer cells causes induction of adhesion proteins and dramatic regression of malignancy in vitro and in vivo." Molecular cancer research 3(7), 365-371.
https://doi.org/10.1158/1541-7786.MCR-04-0117
PMid:16046547
Calvert, A. E. (2017). Cancer-Associated Isocitrate Dehydrogenase 1 Promotes Growth and Resistance to Targeted Therapies in the Absence of Mutation, Northwestern University.
Canelle, L., J. Bousquet, et al. (2006). "A proteomic approach to investigate potential biomarkers directed against membrane-associated breast cancer proteins." Electrophoresis 27(8), 1609-1616.
https://doi.org/10.1002/elps.200500712
PMid:16550497
Caulin, C., C. F. Ware, et al. (2000). "Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis." The Journal of cell biology 149(1), 17-22.
https://doi.org/10.1083/jcb.149.1.17
PMid:10747083 PMCid:PMC2175089
Chou, T.-C. and P. Talalay (1984). "Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors." Advances in enzyme regulation 22, 27-55.
https://doi.org/10.1016/0065-2571(84)90007-4
Chua, B. T., C. Volbracht, et al. (2003). "Mitochondrial translocation of cofilin is an early step in apoptosis induction." Nature cell biology 5(12), 1083.
https://doi.org/10.1038/ncb1070
PMid:14634665
Daneshmand, S., M. L. Quek, et al. (2007). "Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival." Human pathology 38(10), 1547-1552.
https://doi.org/10.1016/j.humpath.2007.03.014
PMid:17640713
Davalieva, K., I. M. Kostovska, et al. (2015). "Proteomics analysis of malignant and benign prostate tissue by 2D DIGE/MS reveals new insights into proteins involved in prostate cancer." The Prostate 75(14), 1586-1600.
https://doi.org/10.1002/pros.23034
PMid:26074449
Dhara, S. (1970). "Cisplatin." Indian J. Chem 8:,123-134.
Fang, H., S. Chen, et al. (2011). "Proteomic identification of differentially expressed proteins in curcumin-treated MCF-7 cells." Phytomedicine 18(8-9), 697-703.
https://doi.org/10.1016/j.phymed.2010.11.012
PMid:21239154
Ferlay, J., I. Soerjomataram, et al. (2015). "GLOBOCAN 2012 v1. 0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11. 2014." Available from: globocan. iarc. fr.
Frankland-Searby, S. and S. R. Bhaumik (2012). "The 26S proteasome complex: an attractive target for cancer therapy." Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1825(1), 64-76.
https://doi.org/10.1016/j.bbcan.2011.10.003
PMid:22037302 PMCid:PMC3242858
Fu, Y. and A. S. Lee (2006). "Glucose regulated proteins in cancer progression, drug resistance and immunotherapy." Cancer biology & therapy 5(7), 741-744.
https://doi.org/10.4161/cbt.5.7.2970
PMid:16861902
Ghosh, M., X. Song, et al. (2004). "Cofilin promotes actin polymerization and defines the direction of cell motility." Science 304(5671), 743-746.
https://doi.org/10.1126/science.1094561
PMid:15118165
Hamler, R. L., K. Zhu, et al. (2004). "A two-dimensional liquid-phase separation method coupled with mass spectrometry for proteomic studies of breast cancer and biomarker identification." Proteomics 4(3), 562-577.
https://doi.org/10.1002/pmic.200300606
PMid:14997480
Han, L., M. B. Stope, et al. (2007). "Direct stimulation of receptor-controlled phospholipase D1 by phospho-cofilin." The EMBO journal 26(19), 4189-4202.
https://doi.org/10.1038/sj.emboj.7601852
PMid:17853892 PMCid:PMC2230846
Hmmier, A., M. E. O'Brien, et al. (2017). "Proteomic analysis of bronchoalveolar lavage fluid (BALF) from lung cancer patients using label-free mass spectrometry." BBA clinical 7, 97-104.
https://doi.org/10.1016/j.bbacli.2017.03.001
PMid:28331811 PMCid:PMC5357681
Holch, J. W., I. Ricard, et al. (2017). "The relevance of primary tumour location in patients with metastatic colorectal cancer: a meta-analysis of first-line clinical trials." European Journal of Cancer 70, 87-98.
https://doi.org/10.1016/j.ejca.2016.10.007
PMid:27907852
Howells, L. M., S. Sale, et al. (2011). "Curcumin ameliorates oxaliplatin-induced chemoresistance in HCT116 colorectal cancer cells in vitro and in vivo." International journal of cancer 129(2), 476-486.
https://doi.org/10.1002/ijc.25670
PMid:20839263
Huq, F. (2015). Synergism from combination of targeted therapy with tumor active phytochemicals in ovarian tumor models and changes in protein expression, AACR.
https://doi.org/10.1158/1538-7445.AM2015-3484
Huq, F., J. Q. Yu, et al. (2014). "Combinations of platinums and selected phytochemicals as a means of overcoming resistance in ovarian cancer." Anticancer research 34(1), 541-545.
Kang, J. H., H. S. Kang, et al. (2015). "Curcumin sensitizes human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatin." Experimental Biology and Medicine 240(11), 1416-1425.
https://doi.org/10.1177/1535370215571881
PMid:25716014 PMCid:PMC4935310
Keshamouni, V. G., G. Michailidis, et al. (2006). "Differential protein expression profiling by iTRAQ− 2DLC− MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype." Journal of proteome research 5(5), 1143-1154.
https://doi.org/10.1021/pr050455t
PMid:16674103
Ku, N. O., R. M. Soetikno, et al. (2003). "Keratin mutation in transgenic mice predisposes to Fas but not TNF-induced apoptosis and massive liver injury." Hepatology 37(5), 1006-1014.
https://doi.org/10.1053/jhep.2003.50181
PMid:12717381
Kubota, H., S. Yamamoto, et al. (2010). "Increased expression of co-chaperone HOP with HSP90 and HSC70 and complex formation in human colonic carcinoma." Cell Stress and Chaperones 15(6), 1003-1011.
https://doi.org/10.1007/s12192-010-0211-0
PMid:20617406 PMCid:PMC3024075
Lai, K. K., K. T. Chan, et al. (2016). "14-3-3σ confers cisplatin resistance in esophageal squamous cell carcinoma cells via regulating DNA repair molecules." Tumor Biology 37(2), 2127-2136.
https://doi.org/10.1007/s13277-015-4018-6
PMid:26346170
Larcher, F., C. Bauluz, et al. (1992). "Aberrant expression of the simple epithelial type II keratin 8 by mouse skin carcinomas but not papillomas." Molecular carcinogenesis 6(2), 112-121.
https://doi.org/10.1002/mc.2940060206
PMid:1382441
Lee, A. S. (2007). "GRP78 induction in cancer: therapeutic and prognostic implications." Cancer research 67(8), 3496-3499.
https://doi.org/10.1158/0008-5472.CAN-07-0325
PMid:17440054
Lee, E., P. Nichols, et al. (2006). "GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer." Cancer research 66(16), 7849-7853.
https://doi.org/10.1158/0008-5472.CAN-06-1660
PMid:16912156
Lei, T., X. Zhao, et al. (2013). "Discovery of potential bladder cancer biomarkers by comparative urine proteomics and analysis." Clinical genitourinary cancer 11(1), 56-62.
https://doi.org/10.1016/j.clgc.2012.06.003
PMid:22982111
Levis, M., R. Pham, et al. (2004). "In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects." Blood 104(4), 1145-1150.
https://doi.org/10.1182/blood-2004-01-0388
PMid:15126317
Li, L., B. Ahmed, et al. (2007). "Liposomal curcumin with and without oxaliplatin: effects on cell growth, apoptosis, and angiogenesis in colorectal cancer." Molecular cancer therapeutics 6(4), 1276-1282.
https://doi.org/10.1158/1535-7163.MCT-06-0556
PMid:17431105
Lu, D., T. Lu, et al. (2013). "Drug combinations in cancer treatment." Clinical Experimental Pharmacology 3(4), 134.
https://doi.org/10.4172/2167-1052.1000e124
Lu, Z., Q. Song, et al. (2014). "Comparative proteomic analysis of anti-cancer mechanism by periplocin treatment in lung cancer cells." Cellular Physiology and Biochemistry 33(3), 859-868.
https://doi.org/10.1159/000358658
PMid:24685647
Macias, A. T., D. S. Williamson, et al. (2011). "Adenosine-derived inhibitors of 78 kDa glucose regulated protein (Grp78) ATPase: insights into isoform selectivity." Journal of medicinal chemistry 54(12), 4034-4041.
https://doi.org/10.1021/jm101625x
PMid:21526763
Maeda, A., H. Ohguro, et al. (2000). "Aberrant expression of photoreceptor-specific calcium-binding protein (recoverin) in cancer cell lines." Cancer Research 60(7), 1914-1920.
Magin, T. M., P. Vijayaraj, et al. (2007). "Structural and regulatory functions of keratins." Experimental cell research 313(10), 2021-2032.
https://doi.org/10.1016/j.yexcr.2007.03.005
PMid:17434482
Martoglio, A.-M., B. Tom, et al. (2000). "Changes in tumorigenesis-and angiogenesis-related gene transcript abundance profiles in ovarian cancer detected by tailored high density cDNA arrays." Molecular Medicine 6(9), 750.
https://doi.org/10.1007/BF03402191
PMid:11071270 PMCid:PMC1949983
Mazumder, M. E. H., P. Beale, et al. (2012). "Epigallocatechin gallate acts synergistically in combination with cisplatin and designed trans-palladiums in ovarian cancer cells." Anticancer research 32(11), 4851-4860.
Miyake, H., I. Hara, et al. (2000). "Stress protein GRP78 prevents apoptosis induced by calcium ionophore, ionomycin, but not by glycosylation inhibitor, tunicamycin, in human prostate cancer cells." Journal of cellular biochemistry 77(3), 396-408.
https://doi.org/10.1002/(SICI)1097-4644(20000601)77:3<396::AID-JCB5>3.0.CO;2-5
Moll, R., M. Divo, et al. (2008). "The human keratins: biology and pathology." Histochemistry and cell biology 129(6), 705.
https://doi.org/10.1007/s00418-008-0435-6
PMid:18461349 PMCid:PMC2386534
Montopoli, M., E. Ragazzi, et al. (2009). "Cell-cycle inhibition and apoptosis induced by curcumin and cisplatin or oxaliplatin in human ovarian carcinoma cells." Cell proliferation 42(2), 195-206.
https://doi.org/10.1111/j.1365-2184.2009.00585.x
PMid:19236381 PMCid:PMC6495462
Mosmann, T. (1983). "Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays." Journal of immunological methods 65(1-2), 55-63.
https://doi.org/10.1016/0022-1759(83)90303-4
Nautiyal, J., S. S. Kanwar, et al. (2011). "Combination of dasatinib and curcumin eliminates chemo-resistant colon cancer cells." Journal of molecular signaling 6(1), 7.
https://doi.org/10.1186/1750-2187-6-7
PMid:21774804 PMCid:PMC3162943
Nebl, G., S. C. Meuer, et al. (1996). "Dephosphorylation of serine 3 regulates nuclear translocation of cofilin." Journal of Biological Chemistry 271(42), 26276-26280.
https://doi.org/10.1074/jbc.271.42.26276
PMid:8824278
Nessa, M. U., P. Beale, et al. (2012). "Combinations of resveratrol, cisplatin and oxaliplatin applied to human ovarian cancer cells." Anticancer research 32(1), 53-59.
Nessa, M. U., P. Beale, et al. (2012). "Studies on combination of platinum drugs cisplatin and oxaliplatin with phytochemicals anethole and curcumin in ovarian tumour models." Anticancer research 32(11), 4843-4850.
O'Connell, K., M. Prencipe, et al. (2012). "The use of LC-MS to identify differentially expressed proteins in docetaxel-resistant prostate cancer cell lines." Proteomics 12(13), 2115-2126.
https://doi.org/10.1002/pmic.201100489
PMid:22623417
Onda, M., M. Emi, et al. (2004). "Comprehensive gene expression profiling of anaplastic thyroid cancers with cDNA microarray of 25 344 genes." Endocrine-related cancer 11(4), 843-854.
https://doi.org/10.1677/erc.1.00818
PMid:15613457
Qi, Y., J. F. Chiu, et al. (2005). "Comparative proteomic analysis of esophageal squamous cell carcinoma." Proteomics 5(11), 2960-2971.
https://doi.org/10.1002/pmic.200401175
PMid:15986332
Reitman, Z. J. and H. Yan (2010). "Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism." Journal of the National Cancer Institute 102(13), 932-941.
https://doi.org/10.1093/jnci/djq187
PMid:20513808 PMCid:PMC2897878
Roblick, U., D. Hirschberg, et al. (2004). "Sequential proteome alterations during genesis and progression of colon cancer." Cellular and Molecular Life Sciences CMLS 61(10), 1246-1255.
https://doi.org/10.1007/s00018-004-4049-4
PMid:15141310
Rufino-Palomares, E. E., F. J. Reyes-Zurita, et al. (2013). "Maslinic acid, a triterpenic anti-tumoural agent, interferes with cytoskeleton protein expression in HT29 human colon-cancer cells." Journal of proteomics 83, 15-25.
https://doi.org/10.1016/j.jprot.2013.02.031
PMid:23499989
Russell Hilt, J., W. D. R. Wittliff, et al. (1973). "Studies on Certain Cytoplasmic Enzymes and Specific Estrogen Receptors in Human Breast Cancer and in Nonmalignant Diseases of the Breast1." CANCER RESEARCH 33, 2054-2062.
Sandoval, J. A., D. J. Hoelz, et al. (2006). "Novel peptides secreted from human neuroblastoma: useful clinical tools?" Journal of pediatric surgery 41(1), 245-251.
https://doi.org/10.1016/j.jpedsurg.2005.10.048
PMid:16410142
Schaller, G., I. Fuchs, et al. (1996). "Elevated keratin 18 protein expression indicates a favorable prognosis in patients with breast cancer." Clinical Cancer Research 2(11), 1879-1885.
Shishkin, S., L. Eremina, et al. (2016). "Cofilin-1 and other ADF/cofilin superfamily members in human malignant cells." International journal of molecular sciences 18(1), 10.
https://doi.org/10.3390/ijms18010010
PMid:28025492 PMCid:PMC5297645
Shuda, M., N. Kondoh, et al. (2003). "Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis." Journal of hepatology 38(5), 605-614.
https://doi.org/10.1016/S0168-8278(03)00029-1
Sinha, P., G. Hütter, et al. (1999). "Increased expression of epidermal fatty acid binding protein, cofilin, and 14-3-3-σ (stratifin) detected by two-dimensional gel electrophoresis, mass spectrometry and microsequencing of drug-resistant human adenocarcinoma of the pancreas." Electrophoresis 20(14), 2952-2960.
https://doi.org/10.1002/(SICI)1522-2683(19991001)20:14<2952::AID-ELPS2952>3.0.CO;2-H
Srisomsap, C., P. Sawangareetrakul, et al. (2004). "Proteomic analysis of cholangiocarcinoma cell line." Proteomics 4(4), 1135-1144.
https://doi.org/10.1002/pmic.200300651
PMid:15048994
Stellwagen, N. C. (1998). DNA Gel Electrophoresis. Nucleic Acid Electrophoresis. D. Tietz. Berlin, Heidelberg, Springer Berlin Heidelberg: 1-53.
https://doi.org/10.1002/elps.1150190802
https://doi.org/10.1002/elps.1150191004
Stricher, F., C. Macri, et al. (2013). "HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting." Autophagy 9(12), 1937-1954.
https://doi.org/10.4161/auto.26448
PMid:24121476
Takegoshi, K., E. Okada, et al. (2016). "Hepatocellular carcinoma and type 2 diabets mellitus: cytokeratin 8/18 expression in hepatocellular carcinoma and glycogen-storing hepatocytes." Hepatoma Res 2, 229-230.
https://doi.org/10.20517/2394-5079.2016.26
Tan, F., Y. Jiang, et al. (2012). "Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis." Molecular & Cellular Proteomics 11(2), M111. 008821.
https://doi.org/10.1074/mcp.M111.008821
PMid:22064513 PMCid:PMC3277750
Tsai, C.-H., S.-J. Chiu, et al. (2009). "Regulated expression of cofilin and the consequent regulation of p27kip1 are essential for G1 phase progression." Cell cycle 8(15), 2365-2374.
https://doi.org/10.4161/cc.8.15.9072
PMid:19556892
Tsai, C.-H., L.-T. Lin, et al. (2015). "Over-expression of cofilin-1 suppressed growth and invasion of cancer cells is associated with up-regulation of let-7 microRNA." Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1852(5), 851-861.
https://doi.org/10.1016/j.bbadis.2015.01.007
PMid:25597880
Turhani, D., K. Krapfenbauer, et al. (2006). "Identification of differentially expressed, tumor-associated proteins in oral squamous cell carcinoma by proteomic analysis." Electrophoresis 27(7), 1417-1423.
https://doi.org/10.1002/elps.200500510
PMid:16568407
Ueno, T., M. Toi, et al. (2005). "Detection of epithelial cell death in the body by cytokeratin 18 measurement." Biomedicine & pharmacotherapy 59, S359-S362.
https://doi.org/10.1016/S0753-3322(05)80078-2
Unwin, R. D., R. A. Craven, et al. (2003). "Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect." Proteomics 3(8), 1620-1632.
https://doi.org/10.1002/pmic.200300464
PMid:12923786
Vergara, D., P. Simeone, et al. (2013). "Comparative proteome profiling of breast tumor cell lines by gel electrophoresis and mass spectrometry reveals an epithelial mesenchymal transition associated protein signature." Molecular BioSystems 9(6), 1127-1138.
https://doi.org/10.1039/C2MB25401H
PMid:23247860
Wang, H., M. T. Kachman, et al. (2004). "Comprehensive proteome analysis of ovarian cancers using liquid phase separation, mass mapping and tandem mass spectrometry: a strategy for identification of candidate cancer biomarkers." Proteomics 4(8), 2476-2495.
https://doi.org/10.1002/pmic.200300763
PMid:15274142
Wang, J., L. Xu, et al. (2013). "Proteomic analysis reveals that proteasome subunit beta 6 is involved in hypoxia-induced pulmonary vascular remodeling in rats." PloS one 8(7), e67942.
https://doi.org/10.1371/journal.pone.0067942
PMid:23844134 PMCid:PMC3700908
Wang, M., S. Wey, et al. (2009). "Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders." Antioxidants & redox signaling 11(9), 2307-2316.
https://doi.org/10.1089/ars.2009.2485
PMid:19309259 PMCid:PMC2819800
Willett, W. C. and D. Trichopoulos (1996). "Nutrition and cancer: A summary of the evidence." Cancer Causes and Control 7(1), 178-180.
https://doi.org/10.1007/BF00115648
PMid:8850444
Wu, S. L., W. S. Hancock, et al. (2003). "An approach to the proteomic analysis of a breast cancer cell line (SKBR-3)." Proteomics 3(6), 1037-1046.
https://doi.org/10.1002/pmic.200300382
PMid:12833528
Xiao, B., X. Si, et al. (2015). "Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy." Journal of Materials Chemistry B 3(39), 7724-7733.
https://doi.org/10.1039/C5TB01245G
PMid:26617985 PMCid:PMC4662402
Xu, S.-G., P.-J. Yan, et al. (2010). "Differential proteomic analysis of a highly metastatic variant of human breast cancer cells using two-dimensional differential gel electrophoresis." Journal of cancer research and clinical oncology 136(10), 1545-1556.
https://doi.org/10.1007/s00432-010-0812-0
PMid:20155427
Yamamoto, T., M. Kudo, et al. (2016). "Identification of aldolase A as a potential diagnostic biomarker for colorectal cancer based on proteomic analysis using formalin-fixed paraffin-embedded tissue." Tumor Biology 37(10), 13595-13606.
https://doi.org/10.1007/s13277-016-5275-8
PMid:27468721 PMCid:PMC5097088
Yang, M., M. Ren, et al. (2016). "Sulforaphene inhibits hepatocellular carcinoma through repressing keratin 8 and activating anoikis." RSC Advances 6(74), 70326-70334.
https://doi.org/10.1039/C6RA11176A
Yao, Y., X.-Y. Jia, et al. (2009). "Comparative proteomic analysis of colon cancer cells in response to oxaliplatin treatment." Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1794(10), 1433-1440.
https://doi.org/10.1016/j.bbapap.2009.06.005
PMid:19520192
Yu, T., Y. Yang, et al. (2015). "Circumvention of cisplatin resistance in ovarian cancer by combination of cyclosporin A and low-intensity ultrasound." European Journal of Pharmaceutics and Biopharmaceutics 91, 103-110.
https://doi.org/10.1016/j.ejpb.2015.02.003
PMid:25668779
Yunos, N. M., P. Beale, et al. (2011). "Synergism from sequenced combinations of curcumin and epigallocatechin-3-gallate with cisplatin in the killing of human ovarian cancer cells." Anticancer Research 31(4), 1131-1140.
Zhao, L., L. Liu, et al. (2007). "Differential proteomic analysis of human colorectal carcinoma cell lines metastasis-associated proteins." Journal of cancer research and clinical oncology 133(10), 771-782.
https://doi.org/10.1007/s00432-007-0222-0
PMid:17503081
Zhu, S., V. Shanbhag, et al. (2017). "A Role for The ATP7A Copper Transporter in Tumorigenesis and Cisplatin Resistance." Journal of Cancer 8(11), 1952.
https://doi.org/10.7150/jca.19029
PMid:28819394 PMCid:PMC5559955
View Dimensions
View Altmetric
Save
Citation
View
Share