Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Impact of Serum Biomarkers Level of Fibroblast Growth Factor 23, Sialic Acids, and Albumin for Alzheimer’s Disease

Hashim Abdul-Sattar J. Al-Bajalani 1*

+ Author Affiliations

Journal of Angiotherapy 6(2) 703-709 https://doi.org/10.25163/angiotherapy.629526

Submitted: 29 September 2022  Revised: 20 November 2022  Published: 25 November 2022 

This study demonstrated a potential biomarkers and mechanisms underlying AD pathology for novel therapeutic strategies in future. Understanding serum biomarkers and oxidative stress in Alzheimer's disease (AD) is crucial for early diagnosis and targeted interventions.

Abstract


Background: Alzheimer’s disease (AD) is one of the dementias members, which is a critical health and societal burdens. Neurofibrillary tangle and senile plaques pathologically characterize it with no clear diagnostic markers. Fibroblast growth factor (FGF)23 and Sialic Acids (Sias) are in cell signaling and antioxidative defenses, and lipid peroxidation (LPO) connected with neurodegeneration. This article examined serum levels of FGF23, Malondialdehyde (MDA) as lipid peroxidation markers, Sialic Acids (Sias), and albumin in AD people in terms of age-matched healthy people. Method: This case-control had 17 AD patients and 17 controls examined terms for serum levels of FGF23, Sias, malondialdehyde (MDA), and albumin. Results:  According to the Biochemical tests, serum FGF23 and MDA levels in AD patients were significantly higher in relation to the controls (p < 0.05). Also, in the AD patients, serum Sias and albumin were low. Also, in the patients, serum MDA levels negatively correlated with normalized global gray matter volume (GMV), adjusted for sex, age, and Child-Pugh class. Conclusion: The potential of FGF23, MDA, Sias, and albumin as biomarkers for AD was underscored. More studies are need to explain their roles in AD pathogenesis. Lowe FGF23 in AD requires regulating disrupted phosphates and neuroprotection mechanisms. Higher MDA indicated low lipid peroxidation which contributes to neuronal damages. Low Sias possibly damages antioxidative defenses, exacerbating oxidative stresses. Low albumin levels are in correlation with cognitive and oxidative damage in AD.

Keywords: Alzheimer's disease, Serum biomarkers, Fibroblast growth factor 23 (FGF23), Oxidative stress, Sialic acid (SA)

References


Allow, S. M., & Sarhat, E. R. (2023). Metformin effects on blood levels of gremlin-1 in polycystic ovarian women. Georgian Medical News, (337), 51-55.

Boada, M., Martínez-Lage, P., Serrano-Castro, P., Costa, M., & Páez, A. (2021). Therapeutic plasma exchange with albumin: A new approach to treat Alzheimer’s disease. Expert Review of Neurotherapeutics, 21(8), 843-849.

Cararo-Lopes, M. M., Mazucanti, C. H. Y., Scavone, C., Kawamoto, E. M., & Berwick, D. C. (2017). The relevance of alphaKLOTHO to the central nervous system: Some key questions. Ageing Research Reviews, 36, 137-148.

Chew, H., Solomon, V. A., & Fonteh, A. N. (2020). Involvement of Lipids in Alzheimer’s Disease Pathology and Potential Therapies. Front. Physiol, 11, 598. doi: 10.3389/fphys.2020.00598

Entedhar, R. S., Al., M. M., & Takea, S. (2022). Study of oxidant-antioxidant status in cerebrospinal fluid of children with meningitis. Eurasian Chemical Communications, 4(9), 863-869. http://www.echemcom.com/article-148799.html

Entedhar, R. S., Al-Anzy, M. M. Y., Ahmeid, M. S., & Sarhat, T. R. (2018). Characteristic Abnormalities in Serum Biochemistry during Congestive Heart Failure. The Medical Journal of Tikrit University, 24(1), 69-77.

Entedhar, R. S., W., S. A., Awni, N., JA, N., & RS, T. R. (2022). Evaluation of Vimentin and Some Biochemical Parameters in the Blood of Acute Myocardial Infarction Patients. Egypt. J. Chem, 65(1), 221–226.

Esterbauer, H., et al. (1991). Chemistry and Biochemistry of 4-Hydroxynonenal, malondialdehyde and related aldehydes. Free Radical Biology and Medicine, 11, 81-128.

Grant, G. H., et al. (1987). Amino Acids and Proteins; Fundamentals of Clinical Chemistry. In N. W. Tietz (Ed.), Third Edition. WB Saunders Company, Philadelphia, USA, 328-329.

Guin, S. K., Velasco-Torrijos, T., & Dempsey, E. (2022). Explorations in a galaxy of sialic acids: A review of sensing horizons, motivated by emerging biomedical and nutritional relevance. Sensors and Diagnostics, 1, 10-70.

Guruaribam, V. D., & Sarumathi, T. (2020). Relevance of serum and salivary sialic acid in oral cancer diagnostics. Journal of Cancer Research and Therapeutics, 16, 401-404. https://www.cancerjournal.net/text.asp?2020/16/3/401/289974

Gustaw-Rothenberg, K., Kowalczuk, K., & Stryjecka-Zimmer, M. (2010). Lipids' peroxidation markers in Alzheimer's disease and vascular dementia. Geriatrics & Gerontology International, 10(2), 161-166.

Guven, A., Dalginli, K. Y., Culhaoglu, H., Huseyinoglu, N., & Alp, S. I. (2020). Investigation of the Levels of Blood MDA, GSH and Nitric Oxide Levels in Patients with Probable Alzheimer’s Disease. Kafkas J Med Sci, 10(3), 188–194.

Hamad, M. S., Ahmed, A. E., Ahmed, S. E., Sarhat, E. R., & Al Anzy, M. M. (2023). Serum lipocalin-2, and fetuin-A levels in patients with Alzheimer's disease. GMN, 4(337), 25-29.

Hu, Y., Wang, J., Zeng, S., Chen, M., Zou, G., Li, Y., Zhu, L., & Xu, J. (2021). Association between serum albumin levels and diabetic peripheral neuropathy among patients with type 2 diabetes: Effect modification of body mass index. Diabetes, Metabolic Syndrome and Obesity, 15, 527-534. https://doi.org/10.2147/DMSO.S347349

Huan, L., Klaus, C., & Neumann, H. (2020). Control of innate immunity by sialic acids in the nervous tissue. International Journal of Molecular Sciences, 21(15), 5494. https://doi.org/10.3390/ijms21155494

Imel, E. A., Biggin, A., Schindeler, A., & Munns, C. F. (2019). FGF23, hypophosphatemia, and emerging treatments. JBMR Plus, 3(8), e10190. doi: 10.1002/jbm4.10190

Iyaswamy, A., Wang, X., Krishnamoorthi, S., Kaliamoorthy, V., Sreenivasmurthy, S. G., Durairajan, S. S. K., Song, J. X., Tong, B. C., Zhu, Z., Su, C. F., Liu, J., Cheung, K. H., Lu, J. H., Tan, J. Q., Li, H. W., Wong, M. S., & Li, M. (2022). Theranostic F-SLOH mitigates Alzheimer's disease pathology involving TFEB and ameliorates cognitive functions in Alzheimer's disease models. Redox Biology, 51, 102280. https://doi.org/10.1016/j.redox.2022.102280

Jia-Jyun W., Weng, S.-C., Liang, C.-K., Lin, C.-S., Lan, T.-H., Lin, S.-Y., & Lin, Y.-T. (2020). Effects of kidney function, serum albumin and hemoglobin on dementia severity in the oldest old people with newly diagnosed Alzheimer’s disease in a residential aged care facility: A crosssectional study. BMC Geriatrics.

Kurpas, A., Supel, K., Idzikowska, K., & Zielinska, M. (2021). FGF23: A Review of Its Role in Mineral Metabolism and Renal and Cardiovascular Disease. Disease Markers, Article ID 8821292, 12 pages. https://doi.org/10.1155/2021/8821292

Liang, Y., Luo, S., Schooling, C. M., & Au Yeung, S. L. (2021). Genetically Predicted Fibroblast Growth Factor 23 and Major Cardiovascular Diseases, Their Risk Factors, Kidney Function, and Longevity: A Two-Sample Mendelian Randomization Study. Frontiers in Genetics, 12, 699455. https://doi.org/10.3389/fgene.2021.699455

Liu, Z., Liu, Y., Tu, X., et al. (2017). High serum levels of malondialdehyde and 8-OHdG are both associated with early cognitive impairment in patients with acute ischemic stroke. Scientific Reports, 7, 9493. https://doi.org/10.1038/s41598-017-09988-3

McGrath, E. R., Himali, J. J., Levy, D., Conner, S. C., Pase, M. P., Abraham, C. R., et al. (2019). Circulating fibroblast growth factor 23 levels and incident dementia: The Framingham heart study. PLoS ONE, 14(3), e0213321. https://doi.org/10.1371/journal.pone.0213321

Mirza, M. A., Larsson, A., Melhus, H., Lind, L., & Larsson, T. E. (2009). Serum intact FGF23 associates with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis, 207(2), 546–551.

Mohammed, I. J., Sarhat, E. R., Hamied, M. A., & Sarhat, T. R. (2021). Assessment of salivary interleukin (IL)-6, IL-10, oxidative stress, antioxidant status, pH, and flow rate in dental caries experience patients in Tikrit Province. Systematic Reviews in Pharmacy, 12(1), 55-59.

Mori, Y., Tsuji, M., Oguchi, T., Kasuga, K., Kimura, A., Futamura, A., Sugimoto, A., Kasai, H., Kuroda, T., Yano, S., Hieda, S., Kiuchi, Y., Ikeuchi, T., & Ono, K. (2021). Serum BDNF as a potential biomarker of Alzheimer's disease: Verification through assessment of serum, cerebrospinal fluid, and medial temporal lobe atrophy. Frontiers in Neurology, 12, 653267. https://doi.org/10.3389/fneur.2021.653267

Piubelli, L., Pollegioni, L., Rabattoni, V., Mauri, M., Princiotta Cariddi, L., Versino, M., & Sacchi, S. (2021). Serum D-serine levels are altered in early phases of Alzheimer's disease: Towards a precocious biomarker. Translational Psychiatry, 11(1), 77. https://doi.org/10.1038/s41398-021-01202-3

Rani, P., Krishnan, S., & Rani Cathrine, C. (2017). Study on analysis of peripheral biomarkers for Alzheimer’s disease diagnosis. Frontiers in Neurology, 8, 328. https://doi.org/10.3389/fneur.2017.00328

Rao, Y. L., Ganaraja, B., Marathe, A., Manjrekar, P. A., Joy, T., Ullal, S., Pai, M. M., & Murlimanju, B. V. (2021). Comparison of malondialdehyde levels and superoxide dismutase activity in resveratrol and resveratrol/donepezil combination treatment groups in Alzheimer's disease induced rat model. 3 Biotech, 11(7), 329. https://doi.org/10.1007/s13205-021-02879-5

Rifai, N. (2018). Tietz Fundamentals of Clinical Chemistry and Molecular Diagnostics (8th ed.).

Sarhat, E. R. (2015). Evaluation of melatonin, and adipokines in patients with Alzheimer’s disease. Global Journal of Biochemistry and Biotechnology, 4(3), 287-295.

Sarhat, E. R., Rmaid, Z. J., & Jabir, T. H. (2020). Changes of salivary interleukine17, Apelin, Omentin and Vaspin levels in normal subjects and diabetic patients with chronic periodontitis. Annals of Tropical Medicine & Public Health, 23(Suppl), S404. http://doi.org/10.36295/ASRO.2020.23118

Sarhat, E. R., Sami, A. Z., Shaimaa, E. A., Takea, S. Ahmed, & Thuraia, R. Sarhat. (2022). Salivary biochemical variables of liver function among individuals with COVID-19 in Thi-Qar Province. Egyptian Journal of Chemistry, 65(6), 305-310.

Sirikul, W., Siri-Angkul, N., Chattipakorn, N., & Chattipakorn, S. C. (2022). Fibroblast growth factor 23 and osteoporosis: Evidence from bench to bedside. International Journal of Molecular Sciences, 23, 2500. https://doi.org/10.3390/ijms23052500

Takeshita, A., Kawakami, K., Furushima, K., & Miyajima, M., & Sakaguchi, K. (2018). Central role of the proximal tubular αKlotho/FGF receptor complex in FGF23-regulated phosphate and vitamin D metabolism. Scientific Reports, 8, 6917.

Wang, L., Wang, F., Liu, J., Zhang, Q., & Lei, P. (2018). Inverse relationship between baseline serum albumin levels and risk of mild cognitive impairment in elderly: A seven-year retrospective cohort study. Tohoku Journal of Experimental Medicine, 246(1), 51-57.

Warren, L. (1959). The Thiobarbituric Acid Assay of Sialic Acids. Journal of Biological Chemistry, 234, 1971-1975.

Washeel, K. G., Sarhat, E. R., & Jabir, T. H. (2019). Assessment of melatonin and oxidant-antioxidant markers in infertile men in Thi-Qar Province. Indian Journal of Forensic Medicine & Toxicology, 13, 1500-1504.

Xiu, W. J., Yang, H. T., Zheng, Y. Y., Wu, T. T., Hou, X. G., Jiang, Z. H., Yang, Y., Ma, Y. T., & Xie, X. (2022). ALB-dNLR score predicts mortality in coronary artery disease patients after percutaneous coronary intervention. Frontiers in Cardiovascular Medicine, 9, 709868. https://doi.org/10.3389/fcvm.2022.709868

Yadav, J., Verma, A. K., Garg, R. K., Ahmad, K., Shiuli, Mahdi, A. A., & Srivastava, S. (2020). Gerontol. Experimental Gerontology, 141, 111092.

Yoshioka, G., Tanaka, A., Nishihira, K., Shibata, Y., & Node, K. (2021). Prognostic Impact of Serum Albumin for Developing Heart Failure Remotely after Acute Myocardial Infarction. Nutrients, 12(9), 2637. https://doi.org/10.3390/nu12092637.

Zhang, M., Han, W., Xu, Y., Li, D., & Xue, Q. (2021). Serum miR-128 serves as a potential diagnostic biomarker for Alzheimer's disease. Neuropsychiatric Disease and Treatment, 17, 269–275. https://doi.org/10.2147/NDT.S290925

Zhao, D., Chen, S., Liu, Y., Xu, Z., Shen, H., Zhang, S., Li, Y., Zhang, H., Zou, C., & Ma, X. (2022). Blood urea nitrogen-to-albumin ratio in predicting long-term mortality in patients following coronary artery bypass grafting: An analysis of the MIMIC-III database. Frontiers in Surgery, 9, 801708. https://doi.org/10.3389/fsurg.2022.801708

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
338
View
0
Share