Angiogenesis, Inflammation & Therapeutics | Impact 0.1 (CiteScore) | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Molecular Detection of NDM-1 and ugpE Genes in Multidrug-Resistant Klebsiella pneumoniae Isolates and Their Correlation with Antibiotic Resistance

Zahraa Redha Shamsee 1*, Aida Hussain Ibrahim 1

+ Author Affiliations

Journal of Angiotherapy 8(4) 1-8 https://doi.org/10.25163/angiotherapy.849599

Submitted: 06 March 2024  Revised: 02 April 2024  Published: 06 April 2024 

Klebsiella pneumoniae shows a global threat due to its multidrug resistance. This study elucidated resistance mechanisms and antibiotic susceptibility, crucial for treatment strategies.

Abstract


Background: Klebsiella pneumoniae is ubiquitous gram-negative encapsulated pathogen that has long been associated with variety of infections worldwide. Antimicrobial resistance, particularly multidrug resistance (MDR), shows a serious threat to public health, with K. pneumoniae being one of the leading culprits. Mechanisms such as production of carbapenemases like NDM-1 and virulence factors like ugpE contribute to resistance and pathogenesis. The study aimed to assess the expression of NDM-1 and ugpE genes in K. pneumoniae isolates and their association with antibiotic resistance. Method: Clinical samples were collected, and K. pneumoniae isolates were identified using biochemical tests and molecular techniques. Antibiotic susceptibility testing was conducted using the disk diffusion method, and MIC values were determined for colistin and meropenem. DNA and RNA were extracted, and PCR was performed to detect NDM-1, ugpE, and 16S rRNA genes. Gene expression was evaluated using quantitative real-time PCR. Results: Among 210 clinical samples, 90 K. pneumoniae isolates were identified. Antibiotic susceptibility testing revealed high resistance to multiple antibiotics, with vancomycin showing 100% resistance. PCR confirmed the presence of NDM-1 (23%) and ugpE (93%) genes. MIC results showed variable resistance patterns. Gene expression analysis demonstrated a significant decrease in NDM-1 expression and an increase in ugpE expression after colistin treatment, while meropenem treatment led to up-regulation of NDM-1. Conclusion: K. pneumoniae isolates exhibited high resistance to various antibiotics, with significant expression of NDM-1 and ugpE genes. Colistin treatment influenced gene expression more than meropenem, highlighting the importance of understanding resistance mechanisms for effective management of infections.

Keywords: Klebsiella pneumoniae, NDM-1 gene, ugpE gene, multidrug resistance, antibiotic susceptibility, gene expression

References


Abdelhamid, S. M., Abd-Elaal, H. M., Matareed, M. O., & Baraka, K. (2020). Genotyping and virulence analysis of drug-resistant clinical Klebsiella pneumoniae isolates in Egypt. Journal of Pure and Applied Microbiology, 14, 1967-1976. file:///C:/Users/User/Downloads/JPAM_Vol_14_Issue3_p_1967-1975

Abdulah Y. Al-Mahdi, Alabed Ali A. Alabed, Mohammed Faez Baobaid et al., (2024). Antibacterial Activity of Herbal Essential Oils against Gram-positive and Gram-negative Bacteria with a Potential for Multidrug Resistance, Journal of Angiotherapy, 8(2), 1-7, 9517

Aboud, Z. H., Shami, A. M. M., & Ridha, B. A. A. (2022). Detection of blaOXA-48 and blaVIM-1 genes among carbapenem-resistant Klebsiella pneumoniae isolated from urinary tract infections in Baghdad hospitals. Iraqi Journal of Biotechnology, 21(2), 276-287.

Albadri, A. T. J., Raheema, R. H., & Melek, H. K. (2021). Characterization and molecular study to detect multidrug-resistant bacteria isolated from patients with diabetic foot ulcers in Wasit province. Ministry of Higher Education.

Algammal, A. M., Hetta, H. F., Elkelish, A., Alkhalifah, D. H. H., Hozzein, W. N., Batiha, G. E. S., & Mabrok, M. A. (2020). Methicillin-resistant Staphylococcus aureus (MRSA): One health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infection and Drug Resistance, 3255-3265.

Al-Gbouri, N. M., & Hamzah, A. M. (2018). Evaluation of Phyllanthus emblica extract as antibacterial and antibiofilm against biofilm formation bacteria. Iraqi Journal of Agricultural Sciences, 49(1). file:///C:/Users/User/Downloads/18.pdf

Al-Jubouri, S. S., & Shami, A. M. (2022). Molecular detection of cephalosporin resistance genes in Escherichia coli isolated from urinary tract infections in Baghdad hospitals. Iraqi Journal of Biotechnology, 21(2), 145-152.

Al-Ruobayiee, M. R., & Ibrahim, A. H. (2023). The relationship between OqxAB efflux pump and drug resistance in Klebsiella pneumoniae isolated from clinical sources. Al-Rafidain Journal of Medical Sciences, 1(5). https://ajms.iq/index.php/ALRAFIDAIN/article/view/309/183

Alzubaidi, S. J., & Alkhafaji, M. H. (2022). Molecular detection of bla SHV gene in clinical and foodborne Klebsiella pneumoniae isolates. Euphrates Journal of Agriculture Science, 14(4).

Cary, N. (2012). Statistical analysis system, User's guide. Statistical. Version 9. SAS. Inst. Inc. USA.

CLSI. (2022). Performance standards for antimicrobial susceptibility testing (32nd ed.). CLSI supplement M100. Clinical and Laboratory Standards Institute, 32-34.

El-Domany, R. A., Awadalla, O. A., Shabana, S. A., El-Dardir, M. A., & Emara, M. (2021). Analysis of the correlation between antibiotic resistance patterns and virulence determinants in pathogenic Klebsiella pneumoniae isolates from Egypt. Microbial Drug Resistance, 27(6), 727-739.

Farzana, R., Shamsuzzaman, S. M., & Mamun, K. Z. (2013). Isolation and molecular characterization of New Delhi metallo-beta-lactamase-1 producing superbug in Bangladesh. The Journal of Infection in Developing Countries, 7(3), 161-168.

Gautam, P. K., & Tomar, S. (2022). Antimicrobial susceptibility pattern of colistin resistance Klebsiella pneumoniae from clinical isolates. International Journal of Health Sciences, 6(S5), 10726–10733.

Ghaima, T. M. (2022). Molecular detection of acrAB and oqxAB genes in Klebsiella pneumoniae and evaluation of the effect of berberine on their gene expression. Iraqi Journal of Biotechnology, 21(2), 124-135.

Hamad, S. T. (2022). Prevalence of carbapenemase genes in Klebsiella pneumoniae isolates from patients with urinary tract infections in Baghdad hospitals. Iraqi Journal of Biotechnology, 21(1).

Hiba Ahmed Jawade, Zahraa Yosif Motaweq, Hawraa Dheyaa Rasool et al. (2024). Study of Antibiotic Resistance in ESKAPE Bacteria Using β-lactamase and ESBL Genes, Journal of Angiotherapy, 8(3), 1-8, 9618

Hussein, N. H. (2018). Emergence of NDM-1 among carbapenem-resistant Klebsiella pneumoniae in Iraqi hospitals. Acta Microbiologica et Immunologica Hungarica, 65(2), 211-227.

Khalaf, T. T., & AL-Hashimy, K. A. (2022). Molecular identification of Klebsiella pneumoniae isolated from UTI patients in Al-Anbar Governorate and study its antibiotic resistance and determination of antimicrobial activity of flax seed oil. Iraqi Journal of Biotechnology, 21(2), 612-622. https://jige.uobaghdad.edu.iq/index.php/IJB/article/view/537

Khalid, H. M., Yousif, S. Y., & Jubrael, J. M. (2013). Bacteriological and molecular characterization of extended spectrum β-lactamases in clinical isolates of Klebsiella pneumoniae isolated from Kurdistan Region, Iraq. Science Journal of University of Zakho, 1(1), 158-163.

Khan, A. U., Maryam, L., & Zarrilli, R. (2017). Structure, genetics and worldwide spread of New Delhi metallo-β-lactamase (NDM): A threat to public health. BMC Microbiology, 17(1), 1-12.

Kulengowski, B., Campion, J. J., Feola, D. J., & Burgess, D. S. (2017). Effect of the meropenem MIC on the killing activity of meropenem and polymyxin B in combination against KPC-producing Klebsiella pneumoniae. The Journal of Antibiotics, 70(9), 974-978. [file:///C:/Users/User/Downloads/ja201773.pdf]

Licht, A., & Schneider, E. (2011). ATP binding cassette systems: structures, mechanisms, and functions. Central European Journal of Biology, 6(6), 785-801. [file:///C:/Users/User/Downloads/10.2478_s11535-011-0054-4.pdf]

Mahmood, S. S. (2022). The prevalence of blaNDM, blaVIM genes among Enterobacter cloacae bacteria. Iraqi Journal of Agricultural Sciences, 53(4), 958-964.

Mariam Ayad Abd, Sawsan Q. T. Al-Quhli, Mahir Ali Jassim, (2024). Salmonella Biofilms And Antibiotic Resistance Determination From Different Patient Types, Journal of Angiotherapy, 8(2), 1-11, 9502

McLoughlin, S. Y., Jackson, C., Liu, J. W., & Ollis, D. L. (2004). Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. Applied and Environmental Microbiology, 70(1), 404-412.

Mochon, A. B., Garner, O. B., Hindler, J. A., Krogstad, P., Ward, K. W., Lewinski, M. A., & Humphries, R. M. (2011). New Delhi metallo-β-lactamase (NDM-1)-producing Klebsiella pneumoniae: Case report and laboratory detection strategies. Journal of Clinical Microbiology, 49(4), 1667-1670.

Muntaha R. Ibraheem, Dhafar N. Al-Ugaili. (2024). Nanoparticle-Mediated Plasmid Curing in Combating Antibiotic Resistance in Pathogenic Bacteria, Journal of Angiotherapy, 8(3), 1-8, 9495

Omar, F. H., & Ibrahim, A. H. (2023). The prevalence of integron class I and II among multi-drug resistance producing Klebsiella pneumoniae. Iraqi Journal of Agricultural Sciences, 54(3), 619-629. https://jcoagri.uobaghdad.edu.iq/index.php/intro/article/view/1775

Poirel, L., Al Maskari, Z., Al Rashdi, F., Bernabeu, S., & Nordmann, P. (2011). NDM-1-producing Klebsiella pneumoniae isolated in the Sultanate of Oman. Journal of Antimicrobial Chemotherapy, 66(2), 304-306.

Rahman, M., Shukla, S. K., Prasad, K. N., Ovejero, C. M., Pati, B. K., Tripathi, A., & Gonzalez-Zorn, B. (2014). Prevalence and molecular characterisation of New Delhi metallo-β-lactamases NDM-1, NDM-5, NDM-6 and NDM-7 in multidrug-resistant Enterobacteriaceae from India. International Journal of Antimicrobial Agents, 44(1), 30-37.

Rhumaid, A. K., & Al-Mathkhury, H. J. (2015). Detection of blaKPC gene in some clinical Klebsiella pneumoniae isolates in Baghdad. Iraqi Journal of Science, 56(4A), 2853-2861.

Saadatian Farivar, A., Nowroozi, J., Eslami, G., & Sabokbar, A. (2018). RAPD PCR profile, antibiotic resistance, prevalence of armA gene, and detection of KPC enzyme in Klebsiella pneumoniae isolates. Canadian Journal of Infectious Diseases and Medical Microbiology, 2018(7).

Saleh, B. H., Yahya, H. N., & Ibrahim, R. N. (2023). Study antibacterial activity of Laurus nobilis leaves water extract on some isolates of pathogenic bacteria. Iraqi Journal of Agricultural Sciences, 54(1), 18-24.

Singh, M., Kakati, B., Agarwal, R. K., & Kotwal, A. (2015). Detection of Klebsiella pneumoniae carbapenemases (KPCs) among ESBL/MBL producing clinical isolates of Klebsiella pneumoniae. International Journal of Current Microbiology and Applied Sciences, 4(4), 726-731. https://api.semanticscholar.org/CorpusID:86049332

Tan, T. Y., & Ng, S. Y. (2006). The in-vitro activity of colistin in gram-negative bacteria. Singapore Medical Journal, 47(7), 621.

Yildiz, S. S., Kaskatepe, B., Avciküçük, H., & Öztürk, S. (2017). Performance of CarbaNP and CIM tests in OXA-48 carbapenemase-producing Enterobacteriaceae. Acta Microbiologica et Immunologica Hungarica, 64(1), 9-16.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
338
View
0
Share