Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Advancements in Ocular Vascularization Analysis Using Deep Learning Techniques – A Systematic Review

F Rahman 1*, Akanksha Mishra 1, Sushree Sasmita Dash 1

+ Author Affiliations

Journal of Angiotherapy 8(1) 1-9 https://doi.org/10.25163/angiotherapy.819487

Submitted: 15 November 2023  Revised: 15 January 2024  Published: 24 January 2024 

This review shows an advanced machine learning method for efficient segmentation and classification of blood vessels in medical images, revolutionizing diagnostic precision.

Abstract


In this review, we have investigated the critical examination of ocular vascularization for clinical assessment, specifically in the context of retinopathies associated with systemic disorders. The study emphasizes the impact of high blood pressure and diabetes on the development of hypertensive and diabetic retinopathy, respectively. Traditionally, identifying and classifying blood vessels in medical imaging has been time-consuming and prone to errors. The introduction of Machine Learning (ML), particularly Deep Learning (DL) methods, has revolutionized the process, allowing for more efficient and precise identification and categorization of blood vessels. The research proposes a cutting-edge ML framework utilizing Convolutional Neural Networks (CNNs) and ensemble learning to optimize blood vessel segmentation and classification. The primary goal is to enhance both speed and efficiency, addressing common challenges in processing medical images. The application of these advanced algorithms not only represents a technological achievement but also a significant stride towards personalized and accurate medical care. Our review consolidates existing research findings, compares methodologies, and highlights the progress in ML techniques that have improved the speed and efficacy of blood vessel segmentation, particularly in ophthalmology.

Keywords: Ocular vascularization, Retinopathies, Machine learning in medical imaging, Blood vessel segmentation, Retinal image analysis

References


Balasubramanian, K., & Ananthamoorthy, N. P. (2021). Robust retinal blood vessel segmentation using convolutional neural network and support vector machine. Journal of Ambient Intelligence and Humanized Computing, 12, 3559-3569.

https://doi.org/10.1007/s12652-019-01559-w

 

Bhatia, S., Alam, S., Shuaib, M., Hameed Alhameed, M., Jeribi, F., Alsuwailem, R.I. (2022). Retinal vessel extraction via assisted multi-channel feature map and U-net. Front. Public Health. 10, 858327.

https://doi.org/10.3389/fpubh.2022.858327

 

Boudegga, H., Elloumi, Y., Akil, M., Bedoui, M. H., Kachouri, R., & Abdallah, A. B. (2021). Fast and efficient retinal blood vessel segmentation method based on deep learning network. Computerized Medical Imaging and Graphics, 90, 101902.

https://doi.org/10.1016/j.compmedimag.2021.101902

 

Boudegga, H., Elloumi, Y., Akil, M., Bedoui, M.H., Kachouri, R., Abdallah, A.B. (2021). Fast and efficient retinal blood vessel segmentation method based on deep learning network. Comput Med Imaging Graph. 90, 101902.

https://doi.org/10.1016/j.compmedimag.2021.101902

 

Dang, V. N., Galati, F., Cortese, R., Di Giacomo, G., Marconetto, V., Mathur, P., ... & Zuluaga, M. A. (2022). Vessel-CAPTCHA: an efficient learning framework for vessel annotation and segmentation. Medical Image Analysis, 75, 102263.

https://doi.org/10.1016/j.media.2021.102263

 

Dang, V.N., Galati, F., Cortese, R., Di Giacomo, G., Marconetto, V., Mathur, P., Zuluaga, M.A. (2022). Vessel-CAPTCHA: an efficient learning framework for vessel annotation and segmentation. Med. Image Anal. 75, 102263.

https://doi.org/10.1016/j.media.2021.102263

 

Gegundez-Arias, M.E., Marin-Santos, D., Perez-Borrero, I., Vasallo-Vazquez, M.J. (2021). A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. Comput. Methods Programs Biomed. Update. 205, 106081.

https://doi.org/10.1016/j.cmpb.2021.106081

 

Imran, A., Li, J., Pei, Y., Yang, J.J., Wang, Q. (2019). Comparative analysis of vessel segmentation techniques in retinal images. IEEE Access, 7, 114862-114887.

https://doi.org/10.1109/ACCESS.2019.2935912

 

Islam, M. T., Mashfu, S. T., Faisal, A., Siam, S. C., Naheen, I. T., & Khan, R. (2021). Deep learning-based glaucoma detection with cropped optic cup and disc and blood vessel segmentation. IEEE Access, 10, 2828-2841.

https://doi.org/10.1109/ACCESS.2021.3139160

 

Islam, M.T., Mashfu, S.T., Faisal, A., Siam, S.C., Naheen, I.T., Khan, R. (2021). Deep learning-based glaucoma detection with cropped optic cup and disc and blood vessel segmentation. IEEE Access, 10, 2828-2841.

https://doi.org/10.1109/ACCESS.2021.3139160

 

Jiang, Y., Zhang, H., Tan, N., Chen, L. (2019). Automatic retinal blood vessel segmentation based on fully convolutional neural networks. sym. 11(9), 1112.

https://doi.org/10.3390/sym11091112

 

Kim, Y.J., Walsh, A.W., Gruessner, R.W. (2023). retinopathy. Transplantation of the Pancreas, 845-857.

https://doi.org/10.1007/978-3-031-20999-4_60

 

Krestanova, A., Kubicek, J., Penhaker, M., Timkovic, J. (2020). Premature infant blood vessel segmentation of retinal images based on hybrid method for the determination of tortuosity. Lékar a technika-Clinician and Technology, 50(2), 49-57.

https://doi.org/10.14311/CTJ.2020.2.02

 

Kumar, K.S., Singh, N.P. (2023). Retinal disease prediction through blood vessel segmentation and classification using ensemble-based deep learning approaches. Neural. Comput. Appl. 35(17), 12495-12511.

https://doi.org/10.1007/s00521-023-08402-6

 

Moccia, S., De Momi, E., El Hadji, S., & Mattos, L. S. (2018). Blood vessel segmentation algorithms-review of methods, datasets and evaluation metrics. Computer methods and programs in biomedicine, 158, 71-91.

https://doi.org/10.1016/j.cmpb.2018.02.001

 

Mookiah, M. R. K., Hogg, S., MacGillivray, T. J., Prathiba, V., Pradeepa, R., Mohan, V., ... & Trucco, E. (2021). A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Medical Image Analysis, 68, 101905.

https://doi.org/10.1016/j.media.2020.101905

 

Naramala, V.R., Kumar, B.A., Rao, V.S., Mishra, A., Hannan, S.A., El-Ebiary, Y.A.B., Manikandan, R. (2023). Enhancing Diabetic Retinopathy Detection Through Machine Learning with Restricted Boltzmann Machines. Int J Adv Comput Sci Appl. 14(9).

https://doi.org/10.14569/IJACSA.2023.0140961

 

Rutba-Aman, Rahnuma Tasmin et al. (2023). Unveiling the Veiled: Leveraging Deep Learning and Network Analysis for De-Anonymization in Social Networks, Journal of Primeasia, 4(1), 1-6, 40042

 

Samuel, P. M., & Veeramalai, T. (2021). VSSC Net: vessel specific skip chain convolutional network for blood vessel segmentation. Computer methods and programs in biomedicine, 198, 105769.

https://doi.org/10.1016/j.cmpb.2020.105769

 

Siddiqi, M.H., Salamah Alhwaiti, Y., Alrashdi, I., Ali, A., Faisal, M. (2021). Segmentation and classification of heart angiographic images using machine learning techniques. J. Healthc. Eng. 2021.

https://doi.org/10.1155/2021/6666458

 

Soomro, T. A., Afifi, A. J., Zheng, L., Soomro, S., Gao, J., Hellwich, O., & Paul, M. (2019). Deep learning models for retinal blood vessels segmentation: a review. IEEE Access, 7, 71696-71717.

https://doi.org/10.1109/ACCESS.2019.2920616

 

Tamim, N., Elshrkawey, M., Abdel Azim, G., & Nassar, H. (2020). Retinal blood vessel segmentation using hybrid features and multi-layer perceptron neural networks. Symmetry, 12(6), 894.

https://doi.org/10.3390/sym12060894

 

Tanvir Anjum Labir, Poly Rani Ghosh et al. (2023). Enhancing Emotion Recognition through Deep Learning and Brain-Computer Interface Technology, Journal of Primeasia, 4(1), 1-6, 40046

 

Triwijoyo, B.K., Sabarguna, B.S., Budiharto, W., Abdurachman, E. (2020). Deep learning approach for classification of eye diseases based on color fundus images. In Diabetes and fundus OCT. 25-57. Elsevier.

https://doi.org/10.1016/B978-0-12-817440-1.00002-4

 

Yang, L., Wang, H., Zeng, Q., Liu, Y., & Bian, G. (2021). A hybrid deep segmentation network for fundus vessels via deep-learning framework. Neurocomputing, 448, 168-178.

https://doi.org/10.1016/j.neucom.2021.03.085

 

Zhao, F., Chen, Y., Hou, Y., & He, X. (2019). Segmentation of blood vessels using rule-based and machine-learning-based methods: a review. Multimedia Systems, 25, 109-118.

https://doi.org/10.1007/s00530-017-0580-7

 

Zhao, F., Chen, Y., Hou, Y., He, X. (2019). Segmentation of blood vessels using rule-based and machine-learning-based methods: a review. Multimed. Syst. 25, 109-118.

https://doi.org/10.1007/s00530-017-0580-7

 

Zhou, S.K., Greenspan, H., Davatzikos, C., Duncan, J.S., Van Ginneken, B., Madabhushi, A., Summers, R.M. (2021). A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE, 109(5), 820-838.

https://doi.org/10.1109/JPROC.2021.3054390

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
486
View
0
Share