EMAN RESEARCH PUBLISHING | Journal | <p>Synthesis And <em>In-Silico </em>Anti-Cancer Potential of N-Aryl-Keto-Nitrone As A Spin Adducts</p>
Inflammation Cancer Angiogenesis Biology and Therapeutics | Impact 0.1 (CiteScore) | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Synthesis And In-Silico Anti-Cancer Potential of N-Aryl-Keto-Nitrone As A Spin Adducts

Rita S. Adam 1*

+ Author Affiliations

Journal of Angiotherapy 8(1) 1-11 https://doi.org/10.25163/angiotherapy.819437

Submitted: 19 December 2023  Revised: 18 January 2024  Published: 21 January 2024 

Advancing spin trapping chemistry through the introduction of effective linear keto-nitrones, expanding applications and refining practical use.

Abstract


Introduction: This study explores N-Aryl-Keto-Nitrone synthesis and its impact on spin-trapping chemistry, revealing crucial insights into free radicals' roles in diseases. While aldo-nitrones are well-studied, keto-nitrones, especially linear ones, are underexplored as spin traps. Seven novel keto-nitrones are introduced, and their efficacy in capturing carbon-centered radicals is assessed. Methods: Synthesis involves dissolving N-aryl-nitroso compounds in THF, adding NaOH, and introducing dimethyl or diethyl bromo malonate. Thin-layer chromatography monitors the reaction, yielding crude keto-nitrones purified through extraction, drying, and recrystallization. Spin trapping experiments use various radical sources, analyzed by EPR at room temperature. In silico predictions assess ADME properties, P-glycoprotein substrate potential, and molecular docking explores binding orientations with VEGFR2 and EGFR. Results: Diverse N-aryl-keto-nitrones with unique structures and reactivity towards carbon-centered radicals are successfully synthesized. Enhanced interpretability is observed in penta-deuterated compounds N6 and N7. The compounds exhibit varying lipophilicity and resistance to oxidative or reducing agents, broadening their potential applications. In silico predictions show favorable properties, and the compounds demonstrate potential as VEGFR1 downregulators, suggesting applications in disrupting angiogenic signals in cancers. Conclusion: This research advances spin-trapping chemistry by introducing linear keto-nitrones as effective agents. The synthesized compounds demonstrate versatility and impact, with ongoing research focusing on additional applications and refinement for practical use.

Keywords: Nitrones, Electron paramagnetic resonance spectroscopy, Spin trap, Free radicals, anti-angiogenesis.

References


Allouch, A., Roubaud, V., Lauricella, R., Bouteiller, J.-C., Tuccio, B. J. O., & chemistry, b. (2003). Preparation and use as spin trapping agents of new ester-nitrones. 1(3), 593-598.

Black, D. S. C., & Johnstone, L. J. A. j. o. c. (1984). Nitrones and oxaziridines. XXXI. Synthesis of some bicyclic 1-pyrroline 1-oxides. 37(1), 117-128.

Bottle, S. E., Micallef, A. S. J. O., & chemistry, b. (2003). Synthesis and EPR spin trapping properties of a new isoindole-based nitrone: 1, 1, 3-trimethylisoindole N-oxide (TMINO). 1(14), 2581-2584.

Boyer, J., Bernardes-Genisson, V., Farines, V., Souchard, J.-P., & Nepveu, F. J. F. r. r. (2004). 2-Substituted-3H-indol-3-one-1-oxides: preparation and radical trapping properties. 38(5), 459-471.

Buettner, G. R. J. F. r. b., & medicine. (1987). Spin Trapping: ESR parameters of spin adducts 1474 1528V. 3(4), 259-303.

Defoin, A. J. S. (2004). Simple preparation of nitroso benzenes and nitro benzenes by oxidation of anilines with H2O2 catalysed with molybdenum salts. 2004(05), 706-710.

Domingues, M. R. M., Domingues, P., Reis, A., Fonseca, C., Amado, F. M., & Ferrer-Correia, A. J. J. J. o. t. A. S. f. M. S. (2003). Identification of oxidation products and free radicals of tryptophan by mass spectrometry. 14(4), 406-416.

Dondoni, A., Franco, S., Junquera, F., Merchan, F., Merino, P., & Tejero, T. J. S. C. (1994). Synthesis of N-benzyl nitrones. 24(18), 2537-2550.

Duling, D. R. J. J. o. M. R., Series B. (1994). Simulation of multiple isotropic spin-trap EPR spectra. 104(2), 105-110.

Durand, G., Polidori, A., Ouari, O., Tordo, P., Geromel, V., Rustin, P., & Pucci, B. J. J. o. m. c. (2003). Synthesis and preliminary biological evaluations of ionic and nonionic amphiphilic α-phenyl-N-tert-butylnitrone derivatives. 46(24), 5230-5237.

El Hassan, I., Lauricella, R., & Tuccio, B. J. C. E. J. o. C. (2006). Preparation of N-aryl-ketonitrone spin traps. 4, 338-350.

Evans, C. A. (1979). Spin trapping.

Exner, O. J. C. o. C. C. C. (1951). A new synthesis of N-methylketoximes. 16, 258-267.

Fischer, R., Hyrosova, E., Fisera, L., Hametner, C., & Cyranski, M. J. C. P.-S. A. O. S. (2005). Preparation of 7-methylenepyrrolo [1, 2-c] pyrimidin-1 (5H)-ones and their 1, 3-dipolar cycloadditions towards isoxazolinyl and isoxazolidinyl spironucleosides. 59(4), 275.

Franco, S., Merchan, F., Merino, P., & Tejero, T. J. S. c. (1995). An improved synthesis of ketonitrones. 25(15), 2275-2284.

Gowenlock, B. G., Maidment, M. J., Orrell, K. G., Prokes, I., & Roberts, J. R. J. J. o. t. C. S., Perkin Transactions 2. (2001). Nitrosoanisoles. Sensitive indicators of dimerisation criteria for C-nitrosoarenes. (10), 1904-1911.

Hay, A., Burkitt, M. J., Jones, C. M., Hartley, R. C. J. A. o. b., & biophysics. (2005). Development of a new EPR spin trap, DOD-8C (N-[4-dodecyloxy-2-(7′-carboxyhept-1′-yloxy) benzylidene]-N-tert-butylamine N-oxide), for the trapping of lipid radicals at a predetermined depth within biological membranes. 435(2), 336-346.

Hinton, R. D., & Janzen, E. G. J. T. J. o. O. C. (1992). Synthesis and characterization of phenyl-substituted C-phenyl-N-tert-butylnitrones and some of their radical adducts. 57(9), 2646-2651.

Holzapfel, C. W., & Crous, R. J. H. (1998). Synthesis and reactions of chiral cyclic nitrones derived from d-ribose. 7(48), 1337-1342.

Ionita, P. J. F. r. r. (2006). Hydrazyl-nitrones, novel hybrid molecules in free radical research. 40(1), 59-65.

Janzen, E. G., Coulter, G. A., Oehler, U. M., & Bergsma, J. P. J. C. J. o. C. (1982). Solvent effects on the nitrogen and β-hydrogen hyperfine splitting constants of aminoxyl radicals obtained in spin trapping experiments. 60(21), 2725-2733.

Janzen, E. G., Wang, Y., & Shetty, R. V. J. J. o. t. A. C. S. (1978). Spin trapping with. alpha.-pyridyl 1-oxide N-tert-butyl nitrones in aqueous solutions. A unique electron spin resonance spectrum for the hydroxyl radical adduct. 100(9), 2923-2925.

Janzen, E. G., & Zhang, Y.-K. J. J. o. M. R., Series B. (1993). EPR Spin Trapping Alkoxyl Radicals with 2-Substituted 5, 5-Dimethylpyrroline-N-oxides (2-XM2PO′ s). 101(1), 91-93.

Janzen, E. G. J. A. o. C. R. (1971). Spin trapping. 4(1), 31-40.

Kumamoto, K., Hirai, T., Kishioka, S., & Iwahashi, H. J. T. l. (2004). Identification of 1-ethoxyethyl radicals in the reaction of ferrous ions with serums from rats exposed to diethyl ether. 154(3), 235-239.

Mottley, C., & Mason, R. P. (1989). Nitroxide radical adducts in biology: chemistry, applications, and pitfalls. In Spin Labeling: Theory and Applications (pp. 489-546): Springer.

Nishi, M., Hagi, A., Ide, H., Murakami, A., & Makino, K. J. B. i. (1992). Comparison of 2, 5, 5-trimethyl-1-pyrroline-N-oxide (M3PO) and 3, 3, 5, 5-tetramethyl-1-pyrroline-N-oxide (M4PO) with 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) as spin traps. 27(4), 651-659.

Qian, S. Y., Yue, G.-H., Tomer, K. B., Mason, R. P. J. F. R. B., & Medicine. (2003). Identification of all classes of spin-trapped carbon-centered radicals in soybean lipoxygenase-dependent lipid peroxidations of ω-6 polyunsaturated fatty acids via LC/ESR, LC/MS, and tandem MS. 34(8), 1017-1028.

Reybier, K., Boyer, J., Farines, V., Camus, F., Souchard, J.-P., Monje, M.-C., . . . Nepveu, F. J. F. r. r. (2006). Radical trapping properties of imidazolyl nitrones. 40(1), 11-20.

Rizzi, C., Lauricella, R., Tuccio, B., Bouteiller, J.-C., Cerri, V., & Tordo, P. J. J. o. t. C. S., Perkin Transactions 2. (1997). Spin-trapping of free radicals by PBN-type β-phosphorylated nitrones in the presence of SDS micelles. (12), 2507-2512.

Rizzi, C., Marque, S., Belin, F., Bouteiller, J.-C., Lauricella, R., Tuccio, B., . . . Tordo, P. J. J. o. t. C. S., Perkin Transactions 2. (1997). PPN-type nitrones: preparation and use of a new series of β-phosphorylated spin-trapping agents. (12), 2513-2518.

Rosen, G. M., Tsai, P., Barth, E. D., Dorey, G., Casara, P., Spedding, M., & Halpern, H. J. J. T. J. o. O. C. (2000). A one-step synthesis of 2-(2-pyridyl)-3H-indol-3-one N-oxide: is it an efficient spin trap for hydroxyl radical? , 65(14), 4460-4463.

Roubaud, V., Rizzi, C., Guérin, S., Lauricella, R., Bouteiller, J.-C., & Tuccio, B. J. F. R. R. (2001). Characteristics and use as spin trapping agent of a β-phosphorylated nitroso compound, DEPNP. 34(3), 237-249.

Saprin, A. N., Piette, L. H. J. A. o. b., & biophysics. (1977). Spin trapping and its application in the study of lipid peroxidation and free radical production with liver microsomes. 180(2), 480-492.

Sár, C. P., Osz, E., Jeko, J., & Hideg, K. J. S. (2004). Synthesis of spiro [pyrrolidine-2, 2′-adamantane] nitrones and nitroxides. 255-259.

Schneider, D., Freed, J. J. b. L. B., & J. Reuben, P. P., New York. (1989). Biological magnetic resonance. 8.

Shine, H. J., Zmuda, H., Kwart, H., Horgan, A. G., & Brechbiel, M. J. J. o. t. A. C. S. (1982). Benzidine rearrangements. 17. The concerted nature of the one-proton p-semidine rearrangement of 4-methoxyhydrazobenzene. 104(19), 5181-5184.

Tordo, P. J. E. p. r. (1998). Spin-trapping: recent developments and applications. 16, 116-144.

Torrente, S., Noya, B., Branchadell, V., & Alonso, R. J. T. J. o. O. C. (2003). Intra-and intermolecular 1, 3-dipolar cycloaddition of sugar ketonitrones with mono-, di-, and trisubstituted dipolarophiles. 68(12), 4772-4783.

Torssell, K. J. (1988). Nitrile oxides, nitrones, and nitronates in organic synthesis: novel strategies in synthesis.

Tuffariello, J. (1984). 1, 3-Dipolar Cycloaddition Chemistry. In: Padwa, A., Ed.

Douglas E. V. Pires, Tom L. Blundell, David B. Ascher. (2015).predicting small-molecule pharmacokinetic properties using graph-based signatures. Journal of Medicinal Chemistry, 58 (9), 4066–4072.

Gasteiger, J., Marsili, M., et.al. (1980). Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges. Tetrahedron. 36, 3219-3288.

Germán Barriga-González, Claudio Olea-Azar, María C Zuñiga-López et al., (2015), Spin trapping: an essential tool for the study of diseases caused by oxidative stress, Curr Top Med Chem, 15(5), 484-95. doi: 10.2174/1568026615666150206155108.

Ke Jian Liu, Minoru Miyake, Tomasz Panz et al., (1999), Evaluation of DEPMPO as a spin trapping agent in biological systems, Free Radical Biology and Medicine, 26 (5–6), 714-721

Loredana Maiuolo, Giordana Feriotto, ORCID log,  Vincenzo Algieri et al., (2018). Antiproliferative activity of novel isatinyl/indanyl nitrones (INs) as potential spin trapping agents of free radical intermediates, MedChemComm, 9, 299-304

O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461

Committee on Publication Ethics

Buy PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
178
View
0
Share