Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Targeting Microtubules by Phytoestrogens for the Treatment of Cancer: An Overview

Fan Xu1, Nozlena Abdul Samad1, Nurhuda Mohamad Ansor1*

+ Author Affiliations

Journal of Angiotherapy 6(2) 654-662 https://doi.org/10.25163/angiotherapy.625313

Submitted: 30 June 2022  Revised: 11 September 2022  Published: 17 September 2022 

In this review, we summarize reported effects of some phytoestrogens that bind directly to tubulin at various binding site and disrupt the microtubule dynamics, either by promoting microtubule polymerization or enhancing microtubule depolymerization.

Abstract


Phytoestrogens are naturally occurring compounds that have similar molecular structure to estrogen hence able to exert estrogenic activities by binding to estrogen receptors (ERs), ERα and ERβ. Phytoestrogens have been reported to suppress cancer cell survival and growth in various types of cancers including lung cancer, breast cancer and prostate cancer. Moreover, phytoestrogens have been shown to inhibit cancer cell migration and invasion by targeting multiple pathways. These cellular processes are closely regulated by microtubule cytoskeleton, hence it is interesting to gain more understanding regarding the effects of phytoestrogen on microtubules structure and dynamics. In this review, we summarize reported effects of some phytoestrogens that bind directly to tubulin at various binding site and disrupt the microtubule dynamics, either by promoting microtubule polymerization or enhancing microtubule depolymerization. We also discuss the effects of phytoestrogens in combination with established chemotherapeutic drugs, including the MTAs. Evidence found is crucial for the development of phytoestrogens to be used as monotherapy or combination therapy (as adjuvant).

Keywords: Cancer treatment; Microtubule dynamic; Microtubule-targeting agent; Phytoestrogen

References


Almatroodi, S.A., Alsahli, M.A., Almatroudi, A., Verma, A.K., Aloliqi, A., Allemailem K.S., Khan, A.A., & Rahmani, A.H. (2021). Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways. Molecules, 26(5), 1315-1352.

 

Alushin, G.M., Lander, G.C., Kellogg, E.H., Zhang, R., Baker, D., & Nogales, E. (2014). High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell, 157(5), 1117-1129.

 

Aziz, N.A., Froemming, G.R.A., Sheikh Abdul Kadir, S.H., & Ibrahim, M.J. (2017). Apigenin increases cisplatin inhibitory effects on the telomerase activity of triple negative breast cancer cells. Jurnal Teknologi, 80(1).

 

Barbier, P., Tsvetkov, P.O., Breuzard, G., & Devred, F. (2014). Deciphering the molecular mechanisms of anti-tubulin plant derived drugs. Phytochemistry Reviews, 13, 157-169.

 

Bukhari, S.N.A., Kumar, G.B., Revankar, H.M., & Qin, H.L. (2017). Development of combretastatins as potent tubulin polymerization inhibitors. Bioorganic Chemistry, 72, 130-147.

 

Casanova, F., Quarti, J., da Costa, D.C., Ramos, C.A., da Silva, J.L., & Fialho, E. (2012). Resveratrol chemosensitizes breast cancer cells to melphalan by cell cycle arrest. Journal of Cellular Biochemistry, 113(8), 2586-2596.

 

Cermák, V., Dostál, V., Jelínek, M., Libusová, L., Kovár, J., Rösel, D., & Brábek, J. (2020). Microtubule-targeting agents and their impact on cancer treatment. European Journal of Cell Biology, 99(4), 151075.

 

Chakrabarty, S., Ganguli, A., Das, A., Nag, D., & Chakrabarti, G. (2015). Epigallocatechin-3-gallate shows anti-proliferative activity in HeLa cells targeting tubulin-microtubule equilibrium. Chemico-Biological Interactions, 242, 380-389.

 

Chakrabarty, S., Nag, D., Ganguli, A., Das, A., Ghosh Dastidar, D., & Chakrabarti, G. (2019). Theaflavin and epigallocatechin-3-gallate synergistically induce apoptosis through inhibition of PI3K/Akt signaling upon depolymerizing microtubules in HeLa cells. Journal of Cellular Biochemistry, 120(4), 5987-6003.

 

Choi, J.Y., Hong, W.G., Cho, J.H., Kim, E.M., Kim, J., Jung, C., Hwang, S., Um, H., & Park J.K. (2015). Podophyllotoxin acetate triggers anticancer effects against non-small cell lung cancer cells by promoting cell death via cell cycle arrest, ER stress and autophagy. International Journal of Oncology, 47, 1257-1265.

 

Cortes, J., & Roché, H. (2012). Docetaxel combined with targeted therapies in metastatic breast cancer. Cancer Treatment Reviews, 38(5), 387-396.

 

Coulson, A., Levy, A., & Gossell-Williams, M. (2014). Monoclonal antibodies in cancer therapy: mechanisms, successes and limitations. West Indian Med J., 63(6), 650-654.

 

Craik, D.J., Fairlie, D.P., Liras, S., & Price, D. (2013). The future of peptide-based drugs. Chem Biol Drug Des., 81, 136–147.

 

Debela, D.T., Muzazu, S.G., Heraro, K.D., Ndalama, M.T., Mesele, B.W., Haile, D.C., Kitui, S.K., & Manyazewal, T. (2021). New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 9, 20503121211034366.

 

Esfandiari, M., Sharif, M., Mohamadyar-Toupkanlou, F., Hanaee-Ahwaz, H., Yousefzadi, M., Jafari, A., Hosseinzadeh, S., & Soleimani, M. (2017). Optimization of cell/tissue culture of Linum persicum for production of lignans derivatives including podophyllotoxin. Plant Cell, Tissue and Organ Culture, 133(1), 51-61.    

 

Goodson, H.V., & Jonasson, E.M. (2018). Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol., 10(6), a022608.

 

Gupta, K., & Panda, D. (2002). Perturbation of microtubule polymerization by quercetin through tubulin binding: a novel mechanism of its antiproliferative activity. Biochemistry, 41(43), 13029-13038.

 

Horio, T., & Murata, T. (2014). The role of dynamic instability in microtubule organization. Front. Plant Sci., 5, 511.

 

Huang, W., Wan, C., Luo, Q., Huang, Z., & Luo, Q. (2014). Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric cancer. Int J Mol Sci., 15(3), 3432-3443.

 

Kang, T.W., & Rhim, H. (2015). Recent advances in tumor ablation for hepatocellular carcinoma. Liver Cancer, 4, 176-187.

 

Kashyap, D., Sharma, A., Tuli, H.S., Sak, K., Punia, S., & Mukherjee, T.K. (2017). Kaempferol-a dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J Funct Foods, 30, 203-219.

 

Koda, M., Murawaki, Y., Hirooka, Y., Kitamoto, M., Ono, M., Sakaeda, H., Joko, K., Sato, S., Tamaki, K., Yamasaki, T., Shibata, H., Shimoe, T., Matsuda, T., Toshikuni, N., Fujioka, S.I., Ohmoto, K., Nakamura, S., Kariyama, K., Aikata, H., … Tsutsui, A. (2012). Complications of radiofrequency ablation for hepatocellular carcinoma in a multicenter study: an analysis of 16 346 treated nodules in 13 283 patients. Hepatol Res., 42(11), 1058-1064.

 

Kumari, A., Shriwas, O., Sisodiya, S., Santra, M.K., Guchhait, S.K., Dash, R., & Panda, D. (2021). Microtubule-targeting agents impair kinesin-2-dependent nuclear transport of β-catenin: Evidence of inhibition of Wnt/β-catenin signaling as an important antitumor mechanism of microtubule-targeting agents. FASEB J., 35(4), e21539.

 

Lashgarian, H.E., Adamii, V., Ghorbanzadeh, V., Chodari, L., Kamali, F., Akbari, S., Dariushnejad, H. (2020). Silibinin inhibit cell migration through downregulation of RAC1 gene expression in highly metastatic breast cancer cell line. Drug Res., 70(10), 478-483.

 

Li, Y., Huang, T., Fu, Y., Wang, T., Zhao, T., Guo, S., Sun, Y., Yang, Y., & Li, C. (2019). Antitumor activity of a novel dual functional podophyllotoxin derivative involved PI3K/AKT/mTOR pathway. PLoS ONE, 14(9), e0215886.

 

Mener, A.S., & Aggarwal, A. (2015). Advances in targeted therapy for breast cancer. Fed Pract., 32(Suppl 4), 46S-49S.

 

Meng, J., Chang, C., Chen, Y., Bi, F., Ji, C., & Liu, W. (2019). EGCG overcomes gefitinib resistance by inhibiting autophagy and augmenting cell death through targeting ERK phosphorylation in NSCLC. Onco Targets Ther., 12, 6033-6043.

 

Mohan, R., & John, A. (2015). Microtubule-associated proteins as direct crosslinkers of actin filaments and microtubules. IUBMB Life, 67(6), 395-403.

 

Mukhtar, E., Adhami, V.M., & Mukhtar, H. (2014). Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther., 13(2), 275-284.

 

Mukhtar, E., Adhami, V.M., Sechi, M., & Mukhtar, H.  (2015). Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells. Cancer Lett., 28, 367(2), 173-183.

 

Musika, W., Kamsa-Ard, S., Jirapornkul, C., Santong, C., & Phunmanee, A. (2021). Lung cancer survival with Ccrrent therapies and new targeted treatments: a comprehensive update from the Srinagarind Hospital-based cancer registry from (2013 to 2017). Asian Pac J Cancer Prev., 22(8), 2501-2507.

 

Nightingale, G., & Ryu, J. (2012). Cabazitaxel (jevtana): a novel agent for metastatic castration-resistant prostate cancer. Pharmacy and Therapeutics, 37(8), 440-448.

 

Novo, M.C., Osugui, L., dos Reis, V.O., Longo-Maugéri, I.M., Mariano, M., & Popi, A.F. (2015). Blockage of Wnt/β-catenin signaling by quercetin reduces survival and proliferation of B-1 cells in vitro. Immunobiology, 220(1), 60-67.

 

Octavia, Y., Tocchetti, C.G., Gabrielson, K.L., Janssens, S., Crijns, H.J., & Moens, A.L. (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol., 52(6), 1213-1225.

 

Olazarán-Santibañez, F., Rivera, G., Vanoye-Eligio, V., Mora-Olivo, A., Aguirre-Guzmán, G., Ramírez-Cabrera, M., & Arredondo-Espinoza, E. (2021). Antioxidant and antiproliferative activity of the ethanolic extract of Equisetum myriochaetum and molecular docking of its main metabolites (apigenin, kaempferol, and quercetin) on β-tubulin. Molecules, 26, 443.

 

Öztürk, Y., Günaydin, C., Yalçin, F., Naziroglu, M., & Braidy, N. (2019). Resveratrol enhances apoptotic and oxidant effects of paclitaxel through TRPM2 channel activation in DBTRG glioblastoma cells. Oxid Med Cell Longev., 2019, 4619865.

 

Pickup, M.W., Mouw, J.K., & Weaver, V.M. (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO Rep., 15(12), 1243-1253.

 

Wang, P., Yang, H.L., Yang, Y.J., Wang, L., & Lee, S.C. (2015). Overcome cancer cell drug resistance using natural products. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID 767136.

 

Ranaivoson, F.M., Gigant, B., Berritt, S., Joullié, M., & Knossow, M. (2012). Structural plasticity of tubulin assembly probed by vinca-domain ligands. Acta Crystallogr D Biol Crystallogr., 68(Pt 8), 927-934.

 

Riahi-Chebbi, I., Souid, S., Othman, H., Haoues, M., Karoui, H., Morel, A., Srairi-Abid, N., Essafi, M., & Essafi-Benkhadir, K. (2019). The phenolic compound kaempferol overcomes 5-fluorouracil resistance in human resistant LS174 colon cancer cells. Sci Rep., 9, 195.

 

Sayed, A.A., & Elfiky A.A. (2018). In silico estrogen-like activity and in vivo osteoclastogenesis inhibitory effect of Cicer arietinum extract. Cell Mol Biol., 64(5), 29-39.

 

Steinmetz, M.O., & Prota, A.E. (2018). Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol., 28(10), 776-792.

 

Sun, X.L., Xie, Y.R., Zhang, N., Zi, C.T., Wang, X.J., & Sheng, J. (2021). Recent advances on small-molecule tubulin inhibitors. Med Res., 5, 200024.           

 

Torrens-Mas, M., & Roca, P. (2020). Phytoestrogens for cancer prevention and treatment. Biol., 9(12), 427-445.

 

Wang, J., & Huang, S. (2018). Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway. Exp Ther Med., 15(3), 2667-2673.

 

Wang, J., Miller, D.D., & Li, W. (2022). Molecular interactions at the colchicine binding site in tubulin: An X-ray crystallography perspective. Drug Discov Today, 27(3), 759-776.

 

Wang, P., Henning, S.M., Heber, D., & Vadgama, J.V. (2015). Sensitization to docetaxel in prostate cancer cells by green tea and quercetin. J Nutr Biochem., 26(4), 408-415.

 

Wang, Y., Benz, F.W., Wu, Y., Wang, Q., Chen, Y., Chen, X., Li, H., Zhang, Y., Zhang, R., & Yang, J. (2016). Structural insights into the pharmacophore of vinca domain inhibitors of microtubules. Mol Pharmacol., 89(2), 233-242.

 

Xiao, Y., Liu, Y., Gao, Z., Li, X., Weng, M., Shi, C., Wang, C., & Sun, L. (2021). Fisetin inhibits the proliferation, migration and invasion of pancreatic cancer by targeting PI3K/AKT/mTOR signaling. Aging (Albany NY), 13(22), 24753-24767.

 

Yang, C., Xie, Q., Zeng, X., Tao, N., Xu, Y., Chen, Y., Wang, J., & Zhang, L. (2019). Novel hybrids of podophyllotoxin and formononetin inhibit the growth, migration and invasion of lung cancer cells. Bioorg Chem., 85, 445-454.

 

Yang, J., Wang, Y., Wang, T., Jiang, J., Botting, C.H., Liu, H., Chen, Q., Yang, J., Naismith, J.H., Zhu, X., & Chen, L. (2016). Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun., 7, 12103.

 

Yuan, Z., Wang, H., Hu, Z., Huang, Y., Yao, F., Sun, S., & Wu, B. (2015). Quercetin inhibits proliferation and drug resistance in KB/VCR oral cancer cells and enhances its sensitivity to vincristine. Nutr Cancer, 67(1), 126-136.

 

Zhang, W., Liu, C., Li, J., Liu, R., Zhuang, J., Feng, F., Yao, Y., & Sun, C. (2020). Target analysis and mechanism of podophyllotoxin in the treatment of triple-negative breast cancer. Front. Pharmacol., 11, 1211.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
660
View
0
Share