Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Disrupting Bacterial Biofilms to Combat Dental Diseases Using Nanotechnology in Oral Healthcare

Hunny Dabas1, Faraat Ali2, Fairy3, Khushi Quadri1, Manshi Dangi1, Parween Jamil4, Mohammed Aslam5, Manvi Singh1*

+ Author Affiliations

Journal of Angiotherapy 8 (11) 1-10 https://doi.org/10.25163/angiotherapy.81110010

Submitted: 20 August 2024 Revised: 30 October 2024  Published: 01 November 2024 


Abstract

Oral biofilms, predominantly bacterial, are key contributors to dental caries and periodontal diseases, posing significant challenges to oral health management. Conventional methods, including mechanical removal and antimicrobial agents, often prove inadequate due to the inherent resilience and complexity of biofilm structures. Recent advancements in nanotechnology offer a transformative approach to biofilm disruption, presenting unique opportunities for oral healthcare innovation. Nanoparticles, with their distinct physicochemical properties, enable precise interactions with bacterial cells and effective penetration into biofilms, targeting bacteria in otherwise inaccessible areas. Their multifunctional nature facilitates the delivery of combined therapeutic agents, enhancing antimicrobial efficacy and addressing diverse bacterial strains. These properties underscore the potential of nanoparticles to overcome the limitations of traditional treatments, paving the way for targeted, efficient, and minimally invasive strategies. As research evolves, the integration of nanoparticles into oral healthcare practices promises to revolutionize the management of bacterial biofilms, offering personalized and groundbreaking solutions to improve oral health outcomes.

Keywords: Chronic Dental Infections, Nanotechnology, Nanoparticles, Oral Biofilms and Dental Biofilms.

References


Abebe, G. M. (2021). Oral biofilm and its impact on oral health, psychological and social interaction. Int. J. Oral Dent. Health, 7, 127.

Achinas, S., Charalampogiannis, N., & Euverink, G. J. W. (2019). A brief recap of microbial adhesion and biofilms. Applied sciences, 9(14), 2801.

Ahmad, J., Garg, A., Mustafa, G., Ahmad, M. Z., Aslam, M., & Mishra, A. (2023). Hybrid Quantum Dot as Promising Tools for Theranostic Application in Cancer. Electronics, 12(4), 972.

Ahmad, M. Z., Ahmad, J., Alasmary, M. Y., Akhter, S., Aslam, M., Pathak, K., ... & Abdullah, M. M. (2022). Nanoemulgel as an approach to improve the biopharmaceutical performance of lipophilic drugs: Contemporary research and application. Journal of Drug Delivery Science and Technology, 72, 103420.

Ahn, S. J., Lee, S. J., Kook, J. K., & Lim, B. S. (2009). Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dental Materials, 25(2), 206-213.

Alam, S., Aslam, M., Khan, A., Imam, S. S., Aqil, M., Sultana, Y., & Ali, A. (2016). Nanostructured lipid carriers of pioglitazone for transdermal application: from experimental design to bioactivity detail. Drug delivery, 23(2), 601-609.

Ali, A., Mohapatra, S., Siddiqui, A., Farooq, U., Shamim, A., Jain, P., ... & Iqbal, Z. (2024). A pharmaco–technical investigation of oxaprozin and gaultheria oil nanoemulgel: a combination therapy. RSC Pharmaceutics.

Allaker, R. P. (2010). The use of nanoparticles to control oral biofilm formation. Journal of dental research, 89(11), 1175-1186.

Allaker, R. P., & Douglas, C. I. (2009). Novel anti-microbial therapies for dental plaque-related diseases. International journal of antimicrobial agents, 33(1), 8-13.

Allaker, R. P., & Yuan, Z. (2019). Nanoparticles and the control of oral biofilms. In Nanobiomaterials in clinical dentistry (pp. 243-275). Elsevier.

Arampatzi, S. I., Giannoglou, G., & Diza, E. (2011). Biofilm formation: A complicated microbiological process. Aristotle University Medical Journal, 38(2), 21-29.

Armitage, G. C., Cullinan, M. P., & Seymour, G. J. (2010). Comparative biology of chronic and aggressive periodontitis: introduction. Periodontology 2000, 53(1).

Aslam, M., Ahmad, M. Z., Mohammed, A. A., Barkat, M. A., & Ahmad, J. (2021). Nanotechnology-Mediated Delivery of Phytomedicine for Burn Wound Healing. In Nanotechnology Driven Herbal Medicine for Burns: From Concept to Application (pp. 21-39). Bentham Science Publishers.

Aslam, M., Deeb, G., Mirza, M. A., Ahmad, J., & Nollet, L. M. (2021). Application of essential oil nanoemulsions in food preservation. In Nanoemulsions in Food Technology (pp. 229-246). CRC Press.

Aslam, M., Javed, M. N., Deeb, H. H., Nicola, M. K., Mirza, M. A., Alam, M. S., ... & Waziri, A. (2022). Lipid nanocarriers for neurotherapeutics: introduction, challenges, blood-brain barrier, and promises of delivery approaches. CNS & Neurological Disorders-Drug Targets-CNS & Neurological Disorders), 21(10), 952-965.

Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., & Memic, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains. International journal of nanomedicine, 3527-3535.

Baehni, P. C., & Takeuchi, Y. (2003). Anti-plaque agents in the prevention of biofilm-associated oral diseases. Oral diseases, 9, 23-29.

Benoit, D. S. W., Sims, K. R., & Fraser, D. (2019). Nanoparticles for oral biofilm treatments. ACS Nano 13: 4869–4875.

Berger, D., Rakhamimova, A., Pollack, A., & Loewy, Z. (2018). Oral biofilms: development, control, and analysis. High-throughput, 7(3), 24.

Bernardi, S., Karygianni, L., Filippi, A., Anderson, A. C., Zürcher, A., Hellwig, E., ... & Al-Ahmad, A. (2020). Combining culture and culture-independent methods reveals new microbial composition of halitosis patients' tongue biofilm. Microbiologyopen, 9(2), e958.

Bertolini, M., Costa, R. C., Barão, V. A. R., Villar, C. C., Retamal-Valdes, B., Feres, M., & Silva Souza, J. G. (2022). Oral microorganisms and biofilms: new insights to defeat the main etiologic factor of oral diseases. Microorganisms, 10(12), 2413.

Besinis, A., De Peralta, T., Tredwin, C. J., & Handy, R. D. (2015). Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS nano, 9(3), 2255-2289.

Bowen, W. H., Burne, R. A., Wu, H., & Koo, H. (2018). Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends in microbiology, 26(3), 229-242.

Bowen, W. H., Burne, R. A., Wu, H., & Koo, H. (2018). Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends in microbiology, 26(3), 229-242.

Bowen, W. H., Burne, R. A., Wu, H., & Koo, H. (2018). Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends in microbiology, 26(3), 229-242.

Chandki, R., Banthia, P., & Banthia, R. (2011). Biofilms: A microbial home. Journal of Indian Society of Periodontology, 15(2), 111-114.

Colombo, A. P. V., & Tanner, A. C. R. (2019). The role of bacterial biofilms in dental caries and periodontal and peri-implant diseases: a historical perspective. Journal of dental research, 98(4), 373-385.

Deng, Z., & Liu, S. (2021). Inflammation-responsive delivery systems for the treatment of chronic inflammatory diseases. Drug Delivery and Translational Research, 11, 1475-1497.

Di Martino, P. (2018). Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS microbiology, 4(2), 274.

Do, T., Devine, D., & Marsh, P. D. (2013). Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics. Clinical, cosmetic and investigational dentistry, 11-19.

Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging infectious diseases, 8(9), 881.

Edis, Z., Wang, J., Waqas, M. K., Ijaz, M., & Ijaz, M. (2021). Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives [Corrigendum]. International Journal of Nanomedicine, 16, 5099-5100.

Faveri, M., Feres, M., Shibli, J. A., Hayacibara, R. F., Hayacibara, M. M., & De Figueiredo, L. C. (2006). Microbiota of the dorsum of the tongue after plaque accumulation: an experimental study in humans. Journal of periodontology, 77(9), 1539-1546.

Feres, M., Teles, F., Teles, R., Figueiredo, L. C., & Faveri, M. (2016). The subgingival periodontal microbiota of the aging mouth. Periodontology 2000, 72(1), 30-53.

Feres, M., Teles, F., Teles, R., Figueiredo, L. C., & Faveri, M. (2016). The subgingival periodontal microbiota of the aging mouth. Periodontology 2000, 72(1), 30-53.

Fernández, M., & Orozco, J. (2021). Advances in functionalized photosensitive polymeric nanocarriers. Polymers, 13(15), 2464.

Ferrer, M. D., & Mira, A. (2016). Oral biofilm architecture at the microbial scale. Trends in microbiology, 24(4), 246-248.

Ferrer, M. D., & Mira, A. (2016). Oral biofilm architecture at the microbial scale. Trends in microbiology, 24(4), 246-248.

Gao, L., Liu, Y., Kim, D., Li, Y., Hwang, G., Naha, P. C., ... & Koo, H. (2016). Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials, 101, 272-284.

Gao, L., Liu, Y., Kim, D., Li, Y., Hwang, G., Naha, P. C., ... & Koo, H. (2016). Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials, 101, 272-284.

Gavas, S., Quazi, S., & Karpinski, T. M. (2021). Nanoparticles for cancer therapy: current progress and challenges. Nanoscale research letters, 16(1), 173.

Gebreyohannes, G., Nyerere, A., Bii, C., & Sbhatu, D. B. (2019). Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon, 5(8).

Guo, R., Li, K., Tian, B., Wang, C., Chen, X., Jiang, X., ... & Hong, W. (2021). Elaboration on the architecture of pH-sensitive surface charge-adaptive micelles with enhanced penetration and bactericidal activity in biofilms. Journal of Nanobiotechnology, 19, 1-18.

Guzmán-Soto, I., McTiernan, C., Gonzalez-Gomez, M., Ross, A., Gupta, K., Suuronen, E. J., ... & Alarcon, E. I. (2021). Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. Iscience, 24(5).

Haiko, J., & Westerlund-Wikström, B. (2013). The role of the bacterial flagellum in adhesion and virulence. Biology, 2(4), 1242-1267.

Hall-Stoodley, L., & Stoodley, P. (2002). Developmental regulation of microbial biofilms. Current opinion in biotechnology, 13(3), 228-233.

Harish, V., Ansari, M. M., Tewari, D., Gaur, M., Yadav, A. B., García-Betancourt, M. L., ... & Barhoum, A. (2022). Nanoparticle and nanostructure synthesis and controlled growth methods. Nanomaterials, 12(18), 3226.

Hobley, L., Harkins, C., MacPhee, C. E., & Stanley-Wall, N. R. (2015). Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS microbiology reviews, 39(5), 649-669.

Hu, C., Wang, L. L., Lin, Y. Q., Liang, H. M., Zhou, S. Y., Zheng, F., ... & Shao, L. Q. (2019). Nanoparticles for the treatment of oral biofilms: current state, mechanisms, influencing factors, and prospects. Advanced Healthcare Materials, 8(24), 1901301.

Imlay, J. A. (2013). The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature Reviews Microbiology, 11(7), 443-454.

Inchingolo, A. D., Malcangi, G., Semjonova, A., Inchingolo, A. M., Patano, A., Coloccia, G., ... & Dipalma, G. (2022). Oralbiotica/oralbiotics: the impact of oral microbiota on dental health and demineralization: a systematic review of the literature. Children, 9(7), 1014.

Inui, T., Walker, L. C., Dodds, M. W., & Hanley, A. B. (2015). Extracellular glycoside hydrolase activities in the human oral cavity. Applied and Environmental Microbiology, 81(16), 5471-5476.

Jiang, T., Su, W., Li, Y., Jiang, M., Zhang, Y., Xian, C. J., & Zhai, Y. (2023). Research progress on nanomaterials for tissue engineering in oral diseases. Journal of Functional Biomaterials, 14(8), 404.

Kadkhoda, Z., Amarlu, Z., Eshraghi, S., & Samiei, N. (2016). Antimicrobial effect of chlorhexidine on Aggregatibacter actinomycetemcomitans biofilms associated with peri-implantitis. Journal of dental research, dental clinics, dental prospects, 10(3), 176.

Kaplan, J. Á. (2010). Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. Journal of dental research, 89(3), 205-218.

Kapoor, A., Malhotra, R., Grover, V., & Grover, D. (2012). Systemic antibiotic therapy in periodontics. Dental research journal, 9(5), 505.

Karimi, A., Karig, D., Kumar, A., & Ardekani, A. M. (2015). Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. Lab on a Chip, 15(1), 23-42.

Kawish, S. M., Ahmed, S., Gull, A., Aslam, M., Pandit, J., Aqil, M., & Sultana, Y. (2017). Development of nabumetone loaded lipid nano-scaffold for the effective oral delivery; optimization, characterization, drug release and pharmacodynamic study. Journal of Molecular Liquids, 231, 514-522.

Khan, J., Tarar, S. M., Gul, I., Nawaz, U., & Arshad, M. (2021). Challenges of antibiotic resistance biofilms and potential combating strategies: a review. 3 Biotech, 11, 1-15.

Khan, Z., Haider, F., Aslam, M., & Haider, T. (2022). Development and Evaluation of Myricetin Nanoemulsion for Liver Cancer Therapy: In-vitro and cell line study. Journal of Pharmaceutical Sciences and Research, 14(9), 908-917.

Kim, Y. J., Choi, Y. S., Baek, K. J., Yoon, S. H., Park, H. K., & Choi, Y. (2016). Mucosal and salivary microbiota associated with recurrent aphthous stomatitis. BMC microbiology, 16, 1-10.

Kostakioti, M., Hadjifrangiskou, M., & Hultgren, S. J. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine, 3(4), a010306.

Kumar, P., Huo, P., Zhang, R., & Liu, B. (2019). Antibacterial properties of graphene-based nanomaterials. Nanomaterials, 9(5), 737.

Lasserre, J. F., Brecx, M. C., & Toma, S. (2018). Oral microbes, biofilms and their role in periodontal and peri-implant diseases. Materials, 11(10), 1802.

Lebeaux, D., Ghigo, J. M., & Beloin, C. (2014). Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiology and Molecular Biology Reviews, 78(3), 510-543.

Lee, J. H., El-Fiqi, A., Mandakhbayar, N., Lee, H. H., & Kim, H. W. (2017). Drug/ion co-delivery multi-functional nanocarrier to regenerate infected tissue defect. Biomaterials, 142, 62-76.

Liu, J., Zhang, J., Guo, L., Zhao, W., Hu, X., & Wei, X. (2017). Inactivation of a putative efflux pump (LmrB) in Streptococcus mutans results in altered biofilm structure and increased exopolysaccharide synthesis: implications for biofilm resistance. Biofouling, 33(6), 481-493.

López, D., Vlamakis, H., & Kolter, R. (2010). Biofilms. Cold Spring Harbor perspectives in biology, 2(7), a000398.

Lu, Y., Li, L., Zhu, Y., Wang, X., Li, M., Lin, Z., ... & Mao, C. (2018). Multifunctional copper-containing carboxymethyl chitosan/alginate scaffolds for eradicating clinical bacterial infection and promoting bone formation. ACS applied materials & interfaces, 10(1), 127-138.

Marsh, P. D. (2009). Dental plaque as a biofilm: the significance of pH in health and caries. Compendium of continuing education in dentistry (Jamesburg, NJ: 1995), 30(2), 76-8.

Messi, P. (2013). Biofilm formation, development and relevance. Biofilm in Bioengineering; Nova Science Publishers, Inc.: New York, NY, USA, 268, 1-26.

Moser, C., Jensen, P. Ø., Thomsen, K., Kolpen, M., Rybtke, M., Lauland, A. S., ... & Tolker-Nielsen, T. (2021). Immune responses to Pseudomonas aeruginosa biofilm infections. Frontiers in Immunology, 12, 625597.

Muhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, X., ... & Huang, T. (2020). Beyond risk: bacterial biofilms and their regulating approaches. Frontiers in microbiology, 11, 928.

Nagata, J. Y., Hioka, N., Kimura, E., Batistela, V. R., Terada, R. S. S., Graciano, A. X., ... & Hayacibara, M. F. (2012). Antibacterial photodynamic therapy for dental caries: evaluation of the photosensitizers used and light source properties. Photodiagnosis and photodynamic therapy, 9(2), 122-131.

Namiki, Y., Fuchigami, T., Tada, N., Kawamura, R., Matsunuma, S., Kitamoto, Y., & Nakagawa, M. (2011). Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring. Accounts of chemical research, 44(10), 1080-1093.

Narayanan, L. L., & Vaishnavi, C. (2010). Endodontic microbiology. Journal of Conservative Dentistry and Endodontics, 13(4), 233-239.

Oncu, A., Huang, Y., Amasya, G., Sevimay, F. S., Orhan, K., & Celikten, B. (2021). Silver nanoparticles in endodontics: recent developments and applications. Restorative Dentistry & Endodontics, 46(3).

Pablico-Lansigan, M. H., Situ, S. F., & Samia, A. C. S. (2013). Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale, 5(10), 4040-4055.

Patil, M., Mehta, D. S., & Guvva, S. (2008). Future impact of nanotechnology on medicine and dentistry. Journal of Indian society of periodontology, 12(2), 34-40.

Petrova, O. E., & Sauer, K. (2012). Sticky situations: key components that control bacterial surface attachment. Journal of bacteriology, 194(10), 2413-2425.

Polizzi, A., Donzella, M., Nicolosi, G., Santonocito, S., Pesce, P., & Isola, G. (2022). Drugs for the quorum sensing inhibition of oral biofilm: New frontiers and insights in the treatment of periodontitis. Pharmaceutics, 14(12), 2740.

Preda, V. G., & Sandulescu, O. (2019). Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries, 7(3).

Pritchard, M. F., Powell, L. C., Khan, S., Griffiths, P. C., Mansour, O. T., Schweins, R., ... & Ferguson, E. L. (2017). The antimicrobial effects of the alginate oligomer OligoG CF-5/20 are independent of direct bacterial cell membrane disruption. Scientific reports, 7(1), 44731.

Rajiv Saini, S. S., & Sharma, S. (2011). Biofilm: A dental microbial infection Journal of Natural Science. Biology and Medicine.

Ramasamy, M., & Lee, J. (2016). Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Research International, 2016(1), 1851242.

Ramírez-Larrota, J. S., & Eckhard, U. (2022). An introduction to bacterial biofilms and their proteases, and their roles in host infection and immune evasion. Biomolecules, 12(2), 306.

Rath, S., Bal, S. C. B., & Dubey, D. (2021). Oral biofilm: development mechanism, multidrug resistance, and their effective management with novel techniques. Rambam Maimonides medical journal, 12(1).

Rath, S., Bal, S. C. B., & Dubey, D. (2021). Oral biofilm: development mechanism, multidrug resistance, and their effective management with novel techniques. Rambam Maimonides medical journal, 12(1).

Reynolds, L. J., Roberts, A. P., & Anjum, M. F. (2016). E?ux in the Oral Metagenome: The Discovery of a Novel Tetracycline and Tigecycline ABC Transporter. Frontiers in Microbiology, 7, 1923.

Rickard, A. H., Gilbert, P., High, N. J., Kolenbrander, P. E., & Handley, P. S. (2003). Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends in microbiology, 11(2), 94-100.

Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522-554.

Rudin, L., Bornstein, M. M., & Shyp, V. (2023). Inhibition of biofilm formation and virulence factors of cariogenic oral pathogen Streptococcus mutans by natural flavonoid phloretin. Journal of Oral Microbiology, 15(1), 2230711.

Rumbaugh, K. P., & Sauer, K. (2020). Biofilm dispersion. Nature Reviews Microbiology, 18(10), 571-586.

Saleh, H. M., & Hassan, A. I. (2023). Synthesis and characterization of nanomaterials for application in cost-effective electrochemical devices. Sustainability, 15(14), 10891.

Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A. L., Galindo, R., & Souto, E. B. (2020). Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials, 10(2), 292.

Schulze-Schweifing, K. (2012). Molecular characterisation of the bacterial community in dentinal caries (Doctoral dissertation, King's College London).

Seerangaiyan, K., van Winkelhoff, A. J., Harmsen, H. J., Rossen, J. W., & Winkel, E. G. (2017). The tongue microbiome in healthy subjects and patients with intra-oral halitosis. Journal of breath research, 11(3), 036010.

Sen, G. T., Ozkemahli, G., Shahbazi, R., Erkekoglu, P., Ulubayram, K., & Kocer-Gumusel, B. (2020). The effects of polymer coating of gold nanoparticles on oxidative stress and DNA damage. International Journal of Toxicology, 39(4), 328-340.

Sharma, S., Mohler, J., Mahajan, S. D., Schwartz, S. A., Bruggemann, L., & Aalinkeel, R. (2023). Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms, 11(6), 1614.

Sheng, Y., Chen, Z., Wu, W., & Lu, Y. (2023). Engineered organic nanoparticles to combat biofilms. Drug Discovery Today, 28(2), 103455.

Shree, P., Singh, C. K., Sodhi, K. K., Surya, J. N., & Singh, D. K. (2023). Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Medicine in Microecology, 16, 100084.

Soares, G. M. S., Figueiredo, L. C., Faveri, M., Cortelli, S. C., Duarte, P. M., & Feres, M. (2012). Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs. Journal of applied oral science, 20, 295-309.

Soto, S. M. (2013). Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 4(3), 223-229.

Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. The lancet, 358(9276), 135-138.

Swimberghe, R. C. D., Coenye, T., De Moor, R. J. G., & Meire, M. A. (2019). Biofilm model systems for root canal disinfection: a literature review. International Endodontic Journal, 52(5), 604-628.

Takenaka, S., Ohsumi, T., & Noiri, Y. (2019). Evidence-based strategy for dental biofilms: Current evidence of mouthwashes on dental biofilm and gingivitis. Japanese Dental Science Review, 55(1), 33-40.

Tang, J., Ouyang, Q., Li, Y., Zhang, P., Jin, W., Qu, S., ... & Qin, M. (2022). Nanomaterials for delivering antibiotics in the therapy of pneumonia. International Journal of Molecular Sciences, 23(24), 15738.

Thambiliyagodage, C., Jayanetti, M., Mendis, A., Ekanayake, G., Liyanaarachchi, H., & Vigneswaran, S. (2023). Recent advances in chitosan-based applications—a review. Materials, 16(5), 2073.

Thomas, C., Minty, M., Vinel, A., Canceill, T., Loubieres, P., Burcelin, R., ... & Laurencin-Dalicieux, S. (2021). Oral microbiota: A major player in the diagnosis of systemic diseases. Diagnostics, 11(8), 1376.

Thukkaram, M., Sitaram, S., Kannaiyan, S. K., & Subbiahdoss, G. (2014). Antibacterial efficacy of iron-oxide nanoparticles against biofilms on different biomaterial surfaces. International Journal of biomaterials, 2014(1), 716080.

Tian, X., Jiang, X., Welch, C., Croley, T. R., Wong, T. Y., Chen, C., ... & Yin, J. J. (2018). Bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism. ACS applied materials & interfaces, 10(10), 8443-8450.

Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R. C., & Arenas, J. (2020). Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics, 10(1), 3.

Vestby, L. K., Grønseth, T., Simm, R., & Nesse, L. L. (2020). Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics, 9(2), 59.

Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine, 1227-1249.

Waziri, A., Bharti, C., Aslam, M., Jamil, P., Mirza, M., Javed, M. N., ... & Alam, M. S. (2022). Probiotics for the chemoprotective role against the toxic effect of cancer chemotherapy. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 22(4), 654-667.

Wei, Y., Shi, M., Zhen, M., Wang, C., Hu, W., Nie, Y., & Wu, X. (2019). Comparison of subgingival and buccal mucosa microbiome in chronic and aggressive periodontitis: a pilot study. Frontiers in cellular and infection microbiology, 9, 53.

Wei, Y., Shi, M., Zhen, M., Wang, C., Hu, W., Nie, Y., & Wu, X. (2019). Comparison of subgingival and buccal mucosa microbiome in chronic and aggressive periodontitis: a pilot study. Frontiers in cellular and infection microbiology, 9, 53.

Wu, D., Fan, W., Kishen, A., Gutmann, J. L., & Fan, B. (2014). Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. Journal of endodontics, 40(2), 285-290.

Yared, G., & Ramli, G. A. A. (2020). Antibacterial ability of sodium hypochlorite heated in the canals of infected teeth: An ex vivo study. Cureus, 12(2).

Yin, W., Xu, S., Wang, Y., Zhang, Y., Chou, S. H., Galperin, M. Y., & He, J. (2021). Ways to control harmful biofilms: prevention, inhibition, and eradication. Critical reviews in microbiology, 47(1), 57-78.

Yu, O. Y., Zhao, I. S., Mei, M. L., Lo, E. C. M., & Chu, C. H. (2017). Dental biofilm and laboratory microbial culture models for cariology research. Dentistry journal, 5(2), 21.

Zhang, Y., Wang, X., Li, H., Ni, C., Du, Z., & Yan, F. (2018). Human oral microbiota and its modulation for oral health. Biomedicine & Pharmacotherapy, 99, 883-893.

Zijnge, V., Van Leeuwen, M. B. M., Degener, J. E., Abbas, F., Thurnheer, T., Gmür, R., & M. Harmsen, H. J. (2010). Oral biofilm architecture on natural teeth. PloS one, 5(2), e9321.

Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
69
View

Share