References
Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. In Polymer (Vol. 49, Issue 26, pp. 5603–5621). Elsevier BV. https://doi.org/10.1016/j.polymer.2008.09.014
Bigi, A., Cojazzi, G., Panzavolta, S., Roveri, N., & Rubini, K. (2002). Stabilization of gelatin films by crosslinking with genipin. In Biomaterials (Vol. 23).
Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., & Roveri, N. (2001). Mechanical and thermal properties of gelatin "lms at di!erent degrees of glutaraldehyde crosslinking. In Biomaterials (Vol. 22).
Boanini, E., Rubini, K., Panzavolta, S., & Bigi, A. (2010). Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta Biomaterialia, 6(2), 383–388. https://doi.org/10.1016/j.actbio.2009.06.015
Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. In Nature Reviews Microbiology (Vol. 16, Issue 3, pp. 143–155). Nature Publishing Group. https://doi.org/10.1038/nrmicro.2017.157
Chang, W. H., Chang, Y., Lai, P. H., & Sung, H. W. (2003). A genipin-crosslinked gelatin membrane as wound-dressing material: In vitro and in vivo studies. Journal of Biomaterials Science, Polymer Edition, 14(5), 481–495. https://doi.org/10.1163/156856203766652084
Choi, S. M., Singh, D., Kumar, A., Oh, T. H., Cho, Y. W., & Han, S. S. (2013). Porous three-dimensional PVA/gelatin sponge for skin tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 62(7), 384–389. https://doi.org/10.1080/00914037.2012.710862
Chowrasia, P., Singh, M., Jana, B. K., Bora, P. L., Mahato, R. K., Kharbithai, R., Gogoi, N. R., Sarkar, T., Pal, P., & Mazumder, B. (2024). Current Drug Delivery Strategies to Design Orally Dissolving Formulations to Target Tuberculosis: A Futuristic Review. Drug Delivery Letters, 14(2), 109–134. https://doi.org/10.2174/0122103031267044231031044456
Chvapil, M. (n.d.). Considerations on manufacturing principles of a synthetic burn dressing: A review.
Cortesi, R., Nastruzzi, C., & Davis, S. S. (1998). Sugar cross-linked gelatin for controlled release: microspheres and disks. In Biomaterials (Vol. 19).
de Clercq, K., Schelfhout, C., Bracke, M., de Wever, O., van Bockstal, M., Ceelen, W., Remon, J. P., & Vervaet, C. (2016). Genipin-crosslinked gelatin microspheres as a strategy to prevent postsurgical peritoneal adhesions: In vitro and in vivo characterization. Biomaterials, 96, 33–46. https://doi.org/10.1016/j.biomaterials.2016.04.012
de la Torre, R. A., Bachman, S. L., Wheeler, A. A., Bartow, K. N., & Scott, J. S. (2007). Hemostasis and hemostatic agents in minimally invasive surgery. In Surgery (Vol. 142, Issue 4 Suppl). https://doi.org/10.1016/j.surg.2007.06.023
Du, J. P., Fan, Y., Hao, D. J., Huang, Y. F., Zhang, J. N., & Yuan, L. H. (2018). Application of Gelatin Sponge Impregnated with a Mixture of 3 Drugs to Intraoperative Nerve Root Block to Promote Early Postoperative Recovery of Lumbar Disc Herniation. World Neurosurgery, 114, e1168–e1173. https://doi.org/10.1016/j.wneu.2018.03.170
Fan, X., Li, M., Yang, Q., Wan, G., Li, Y., Li, N., & Tang, K. (2021). Morphology-controllable cellulose/chitosan sponge for deep wound hemostasis with surfactant and pore-foaming agent. Materials Science and Engineering C, 118. https://doi.org/10.1016/j.msec.2020.111408
Fereshteh, Z. (2018). Freeze-drying technologies for 3D scaffold engineering. In Functional 3D Tissue Engineering Scaffolds: Materials, Technologies, and Applications (pp. 151–174). Elsevier. https://doi.org/10.1016/B978-0-08-100979-6.00007-0
Furuike, T., Chaochai, T., Okubo, T., Mori, T., & Tamura, H. (2016). Fabrication of nonwoven fabrics consisting of gelatin nanofibers cross-linked by glutaraldehyde or N-acetyl-D-glucosamine by aqueous method. International Journal of Biological Macromolecules, 93, 1530–1538. https://doi.org/10.1016/j.ijbiomac.2016.03.053
Gomes, S. R., Rodrigues, G., Martins, G. G., Henriques, C. M. R., & Silva, J. C. (2013). In vitro evaluation of crosslinked electrospun fish gelatin scaffolds. Materials Science and Engineering C, 33(3), 1219–1227. https://doi.org/10.1016/j.msec.2012.12.014
Harris, L. D., Kim, B.-S., & Mooney, D. J. (1998). Open pore biodegradable matrices formed with gas foaming.
Hou, Q., Grijpma, D. W., & Feijen, J. (2003). Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials, 24(11), 1937–1947. https://doi.org/10.1016/S0142-9612(02)00562-8
Howell-Jones, R. S., Wilson, M. J., Hill, K. E., Howard, A. J., Price, P. E., & Thomas, D. W. (2005). A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. In Journal of Antimicrobial Chemotherapy (Vol. 55, Issue 2, pp. 143–149). https://doi.org/10.1093/jac/dkh513
Hu, S., Bi, S., Yan, D., Zhou, Z., Sun, G., Cheng, X., & Chen, X. (2018). Preparation of composite hydroxybutyl chitosan sponge and its role in promoting wound healing. Carbohydrate Polymers, 184, 154–163. https://doi.org/10.1016/j.carbpol.2017.12.033
Imani, R., Rafienia, M., & Emami, S. H. (2013). Synthesis and characterization of glutaraldehyde-based crosslinked gelatin as a local hemostat sponge in surgery: an in vitro study. Bio-Medical Materials and Engineering, 23(3), 211–224. https://doi.org/10.3233/bme-130745
Jana, B. K., Singh, M., Dutta, R. S., & Mazumder, B. (2024). Current Drug Delivery Strategies for Buccal Cavity Ailments using Mouth Dissolving Wafer Technology: A Comprehensive Review on the Present State of the Art. Current Drug Delivery, 21(3), 339–359. https://doi.org/10.2174/1567201820666221128152010
Jayakrishnan, A., & Jameela, S. R. (1996). Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. In Biomaterids (Vol. 17).
Jevotovsky, D. S., Thirukumaran, C. P., & Rubery, P. T. (2018). Friday, September 28, 2018 3:00 PM–4:00 PM abstracts: optimizing lumbar disc surgery. The Spine Journal, 18(8), S105–S106. https://doi.org/10.1016/j.spinee.2018.06.478
Kabiri, M., Emami, S. H., Rafinia, M., & Tahriri, M. (2011). Preparation and characterization of absorbable hemostat crosslinked gelatin sponges for surgical applications. Current Applied Physics, 11(3), 457–461. https://doi.org/10.1016/j.cap.2010.08.031
Khadidja, L., Asma, C., Mahmoud, B., & Meriem, E. (2017). Alginate/gelatin crosslinked system through Maillard reaction: preparation, characterization and biological properties. Polymer Bulletin, 74(12), 4899–4919. https://doi.org/10.1007/s00289-017-1997-z
Kheirabadi, B. S., MacE, J. E., Terrazas, I. B., Fedyk, C. G., Estep, J. S., Dubick, M. A., & Blackbourne, L. H. (2010). Safety evaluation of new hemostatic agents, smectite granules, and kaolin-coated gauze in a vascular injury wound model in swine. Journal of Trauma - Injury, Infection and Critical Care, 68(2), 269–277. https://doi.org/10.1097/TA.0b013e3181c97ef1
Kirdponpattara, S., Phisalaphong, M., & Kongruang, S. (2017). Gelatin-bacterial cellulose composite sponges thermally cross-linked with glucose for tissue engineering applications. Carbohydrate Polymers, 177, 361–368. https://doi.org/10.1016/j.carbpol.2017.08.094
Ko, C. L., Tien, Y. C., Wang, J. C., & Chen, W. C. (2012). Characterization of controlled highly porous hyaluronan/gelatin cross-linking sponges for tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 14, 227–238. https://doi.org/10.1016/j.jmbbm.2012.06.019
Lee, S. B., Kim, Y. H., Chong, M. S., Hong, S. H., & Lee, Y. M. (2005). Study of gelatin-containing artificial skin V: Fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials, 26(14), 1961–1968. https://doi.org/10.1016/j.biomaterials.2004.06.032
Li, Q., Lu, F., Zhou, G., Yu, K., Lu, B., Xiao, Y., Dai, F., Wu, D., & Lan, G. (2017). Silver Inlaid with Gold Nanoparticle/Chitosan Wound Dressing Enhances Antibacterial Activity and Porosity, and Promotes Wound Healing. Biomacromolecules, 18(11), 3766–3775. https://doi.org/10.1021/acs.biomac.7b01180
Liang, H.-C., Chang, W.-H., Liang, H.-F., Lee, M.-H., & Sung, H.-W. (2004). Crosslinking Structures of Gelatin Hydrogels Crosslinked with Genipin or a Water-Soluble Carbodiimide.
Mahabub Hasan, M., Mashud Alam, A., & Lecturer, S. (2014). Application of electrospinning techniques for the production of tissue engineering scaffolds: a review. Khandakar Abu Nayem (Vol. 10, Issue 15).
Masutani, E. M., Kinoshita, C. K., Tanaka, T. T., Ellison, A. K. D., & Yoza, B. A. (2014). Increasing thermal stability of gelatin by UV-induced cross-linking with glucose. International Journal of Biomaterials, 2014. https://doi.org/10.1155/2014/979636
Mekhail, M., Jahan, K., & Tabrizian, M. (2014). Genipin-crosslinked chitosan/poly-l-lysine gels promote fibroblast adhesion and proliferation. Carbohydrate Polymers, 108(1), 91–98. https://doi.org/10.1016/j.carbpol.2014.03.021
Mikes, A. G., Sarakinos, G., Leite, S. M., Vacant, J. P., & Langer, R. (n.d.). Laminated three-dimensional biodegradable foams for use in tissue engineering.
Murphy, W. L., Dennis, R. G., Kileny, J. L., & Mooney, D. J. (2002). Salt Fusion: An Approach to Improve Pore Interconnectivity within Tissue Engineering Scaffolds. In TISSUE ENGINEERING (Vol. 8, Issue 1).
Muzzarelli, R. A. A. (2009). Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. In Carbohydrate Polymers (Vol. 77, Issue 1, pp. 1–9). https://doi.org/10.1016/j.carbpol.2009.01.016
Nagahama, Y., Li, L., Takeda, M., Mitsuhara, T., Kurisu, K., Howard, M. A., Hitchon, P. W., & Yamaguchi, S. (2019). Localized controlled fibrin glue application with gelatin sponge for hemostasis and dural defect repair: Technical note. Interdisciplinary Neurosurgery: Advanced Techniques and Case Management, 18. https://doi.org/10.1016/j.inat.2019.100476
Naimark, W. A., Pereira, C. A., Tsang, K., & Lee, J. M. (1995). HMDC crosslinking of bovine pericardial tissue: a potential role of the solvent environment in the design of bioprosthetic materials. In JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE (Vol. 6).
Nakajima, N., & Ikada, Y. (1995). Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous Media. In Bioconjugate Chem (Vol. 6).
Nguyen, D. T., Orgill, D. P., & Murphy, G. F. (2009). The pathophysiologic basis for wound healing and cutaneous regeneration. In Biomaterials for Treating Skin Loss: A volume in Woodhead Publishing Series in Biomaterials (pp. 25–57). Elsevier Ltd. https://doi.org/10.1533/9781845695545.1.25
Nickerson, M. T., Patel, J., Heyd, D. v., Rousseau, D., & Paulson, A. T. (2006). Kinetic and mechanistic considerations in the gelation of genipin-crosslinked gelatin. International Journal of Biological Macromolecules, 39(4–5), 298–302. https://doi.org/10.1016/j.ijbiomac.2006.04.010
Panzavolta, S., Gioffrè, M., Focarete, M. L., Gualandi, C., Foroni, L., & Bigi, A. (2011). Electrospun gelatin nanofibers: Optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomaterialia, 7(4), 1702–1709. https://doi.org/10.1016/j.actbio.2010.11.021
Powell, H. M., & Boyce, S. T. (2006). EDC cross-linking improves skin substitute strength and stability. Biomaterials, 27(34), 5821–5827. https://doi.org/10.1016/j.biomaterials.2006.07.030
Protein fructosylation: fructose and the Maillard reaction. (1993). https://academic.oup.com/ajcn/article-abstract/58/5/779S/4732308
Ratanavaraporn, J., Rangkupan, R., Jeeratawatchai, H., Kanokpanont, S., & Damrongsakkul, S. (2010). Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. International Journal of Biological Macromolecules, 47(4), 431–438. https://doi.org/10.1016/j.ijbiomac.2010.06.008
Rault, I., Frei, V., & Herbage, D. (1996). Evaluation of different chemical methods for cross-linking collagen gel, films and sponges. In JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE.
Seon Choi, Y., Ran Hong, S., Moo Lee, Y., Won Song, K., Hyang Park, M., & Soo Nam, Y. (1999a). Studies on Gelatin-Containing Artificial Skin: II. Preparation and Characterization of Cross-Linked Gelatin-Hyaluronate Sponge.
Seon Choi, Y., Ran Hong, S., Moo Lee, Y., Won Song, K., Hyang Park, M., & Soo Nam, Y. (1999b). Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. In Biomaterials (Vol. 20).
Siimon, K., Reemann, P., Põder, A., Pook, M., Kangur, T., Kingo, K., Jaks, V., Mäeorg, U., & Järvekülg, M. (2014). Effect of glucose content on thermally cross-linked fibrous gelatin scaffolds for tissue engineering. Materials Science and Engineering C, 42, 538–545. https://doi.org/10.1016/j.msec.2014.05.075
Singh, S., Young, A., & McNaught, C. E. (2017). The physiology of wound healing. In Surgery (United Kingdom) (Vol. 35, Issue 9, pp. 473–477). Elsevier Ltd. https://doi.org/10.1016/j.mpsur.2017.06.004
Speer, D. P., Chvapil, M., Eskelson, C. D., & Ulreich, J. (n.d.). Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials.
Tai, H., Mather, M. L., Howard, D., Wang, W., White, L. J., Crowe, J. A., Morgan, S. P., Chandra, A., Williams, D. J., Howdle, S. M., & Shakesheff, K. M. (2007). Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing. European Cells and Materials, 14, 64–76. https://doi.org/10.22203/ecm.v014a07
Tomihata, K., Agr, M., & Ikada, Y. (1996). Cross-Linking of Gelatin with Carbodiimides. In TISSUE ENGINEERING (Vol. 2, Issue 4). Mary Ann Liebert, Inc.
Tomihata, K., Burczak, K., Shiraki, K., & Ikada, Y. (1993). Cross-Linking and Biodegradation of Native and Denatured Collagen (pp. 275–286). https://doi.org/10.1021/bk-1994-0540.ch024
Tomizawa, Y. (2005). Clinical benefits and risk analysis of topical hemostats: A review. In Journal of Artificial Organs (Vol. 8, Issue 3, pp. 137–142). https://doi.org/10.1007/s10047-005-0296-x
Ulubayram, K., Aksu, E., Gurhan, S. I. D., Serbetci, K., & Hasirci, N. (2002). Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. In Journal of Biomaterials Science, Polymer Edition (Vol. 13, Issue 11, pp. 1203–1219). https://doi.org/10.1163/156856202320892966
Ulubayram, K., Cakar, A. N., Korkusuz, P., Ertan, C., & Hasirci, N. (2001). EGF containing gelatin-based wound dressings. In Biomaterials (Vol. 22).
Ulubayram, K., Eroglu, I., & Hasirci, N. (2002). Gelatin microspheres and sponges for delivery of macromolecules. Journal of Biomaterials Applications, 16(3), 227–241. https://doi.org/10.1177/0885328202016003178
Wang, T., Zhu, X. K., Xue, X. T., & Wu, D. Y. (2012). Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydrate Polymers, 88(1), 75–83. https://doi.org/10.1016/j.carbpol.2011.11.069
Wang, X., Guo, J., Zhang, Q., Zhu, S., Liu, L., Jiang, X., Wei, D. H., Liu, R. S., & Li, L. (2020). Gelatin sponge functionalized with gold/silver clusters for antibacterial application. Nanotechnology, 31(13). https://doi.org/10.1088/1361-6528/ab59eb
Yang, G., Xiao, Z., Long, H., Ma, K., Zhang, J., Ren, X., & Zhang, J. (2018). Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-20006-y
Yeh, M. K., Liang, Y. M., Hu, C. S., Cheng, K. M., Hung, Y. W., Young, J. J., & Hong, P. da. (2012). Studies on a novel gelatin sponge: Preparation and characterization of cross-linked gelatin scaffolds using 2-chloro-1-methylpyridinium iodide as a zero-length cross-linker. Journal of Biomaterials Science, Polymer Edition, 23(7), 973–990. https://doi.org/10.1163/092050611X568430
Young, A., & McNaught, C. E. (2011). The physiology of wound healing. In Surgery (Vol. 29, Issue 10, pp. 475–479). Elsevier Ltd. https://doi.org/10.1016/j.mpsur.2011.06.011
Zeugolis, D. I., Khew, S. T., Yew, E. S. Y., Ekaputra, A. K., Tong, Y. W., Yung, L. Y. L., Hutmacher, D. W., Sheppard, C., & Raghunath, M. (2008). Electro-spinning of pure collagen nano-fibres - Just an expensive way to make gelatin? Biomaterials, 29(15), 2293–2305. https://doi.org/10.1016/j.biomaterials.2008.02.009