References
Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database, 2020, baaa010. https://doi.org/10.1093/database/baaa010
Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2023). Re-thinking data strategy and integration for artificial intelligence: concepts, opportunities, and challenges. Applied Sciences, 13(12), 7082. https://doi.org/10.3390/app13127082
Cimmino, G., Muscoli, S., De Rosa, S., Cesaro, A., Perrone, M. A., Selvaggio, S., ... & Coronelli, M. (2023). Evolving concepts in the pathophysiology of atherosclerosis: From endothelial dysfunction to thrombus formation through multiple shades of inflammation. Journal of Cardiovascular Medicine, 24(Supplement 2), e156-e167. https://doi.org/10.2459/JCM.0000000000001450
Cremin, C. J., Dash, S., & Huang, X. (2022). Big data: historic advances and emerging trends in biomedical research. Current Research in Biotechnology, 4, 138-151. https://doi.org/10.1016/j.crbiot.2022.02.004
Jerka, D., Bonowicz, K., Piekarska, K., Gokyer, S., Derici, U. S., Hindy, O. A., ... & Gagat, M. (2024). Unraveling endothelial cell migration: Insights into fundamental forces, inflammation, biomaterial applications, and tissue regeneration strategies. ACS Applied Bio Materials, 7(4), 2054-2069. https://doi.org/10.1021/acsabm.3c01227
Kumar Attar, R., & Komal. (2022). The emergence of Natural Language Processing (NLP) techniques in healthcare AI. In Artificial intelligence for innovative healthcare informatics (pp. 285-307). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-96569-3_14
Latifi-Navid, H., Barzegar Behrooz, A., Jamehdor, S., Davari, M., Latifinavid, M., Zolfaghari, N., ... & Sheibani, N. (2023). Construction of an Exudative Age-Related Macular Degeneration Diagnostic and Therapeutic Molecular Network Using Multi-Layer Network Analysis, a Fuzzy Logic Model, and Deep Learning Techniques: Are Retinal and Brain Neurodegenerative Disorders Related? Pharmaceuticals, 16(11), 1555. https://doi.org/10.3390/ph16111555
Leong, T. K. M., Lo, W. S., Lee, W. E. Z., Tan, B., Lee, X. Z., Lee, L. W. J. N., ... & Yeong, J. (2021). Leveraging advances in immunopathology and artificial intelligence to analyze in vitro tumor models in composition and space. Advanced Drug Delivery Reviews, 177, 113959. https://doi.org/10.1016/j.addr.2021.113959
Liu, Z., Roberts, R. A., Lal-Nag, M., Chen, X., Huang, R., & Tong, W. (2021). AI-based language models powering drug discovery and development. Drug Discovery Today, 26(11), 2593-2607. https://doi.org/10.1016/j.drudis.2021.06.009
Patel, M. A., Knauer, M. J., Nicholson, M., Daley, M., Van Nynatten, L. R., Martin, C., ... & Fraser, D. D. (2022). Elevated vascular transformation blood biomarkers in Long-COVID indicate angiogenesis as a key pathophysiological mechanism. Molecular Medicine, 28(1), 122. https://doi.org/10.1186/s10020-022-00548-8
Prelaj, A., Miskovic, V., Zanitti, M., Trovo, F., Genova, C., Viscardi, G., ... & Pedrocchi, A. L. G. (2023). Artificial intelligence for predictive biomarker discovery in immuno-oncology: A systematic review. Annals of Oncology. https://doi.org/10.1016/j.annonc.2023.10.125
Rana, M., & Bhushan, M. (2023). Machine learning and deep learning approach for medical image analysis: diagnosis to detection. Multimedia Tools and Applications, 82(17), 26731-26769. https://doi.org/10.1007/s11042-022-14305-w
Raparthi, M. (2022). AI Assisted Drug Discovery: Emphasizing Its Role in Accelerating Precision Medicine Initiatives and Improving Treatment Outcomes. Human-Computer Interaction Perspectives, 2(2), 1-10.
Rehman, A., Naz, S., & Razzak, I. (2022). Leveraging big data analytics in healthcare enhancement: trends, challenges and opportunities. Multimedia Systems, 28(4), 1339-1371. https://doi.org/10.1007/s00530-020-00736-8
Sahu, M., Gupta, R., Ambasta, R. K., & Kumar, P. (2022). Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Progress in Molecular Biology and Translational Science, 190(1), 57-100. https://doi.org/10.1016/bs.pmbts.2022.03.002
Sayed, N., Huang, Y., Nguyen, K., Krejciova-Rajaniemi, Z., Grawe, A. P., Gao, T., ... & Furman, D. (2021). An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nature Aging, 1(7), 598-615. https://doi.org/10.1038/s43587-021-00082-y
Subramanian, A., Zakeri, P., Mousa, M., Alnaqbi, H., Alshamsi, F. Y., Bettoni, L., ... & Carmeliet, P. (2022). Angiogenesis goes computational–The future way forward to discover new angiogenic targets? Computational and Structural Biotechnology Journal, 20, 5235-5255. https://doi.org/10.1016/j.csbj.2022.09.019
Wang, X., Meng, L., Zhang, J., Zou, L., Jia, Z., Han, X., ... & Lu, M. (2023). Identification of angiogenesis-related genes in diabetic foot ulcer using machine learning algorithms. Heliyon, 9(12).
Yang, Q., Wijerathne, H., Langston, J. C., Kiani, M. F., & Kilpatrick, L. E. (2021). Emerging approaches to understanding microvascular endothelial heterogeneity: a roadmap for developing anti-inflammatory therapeutics. International Journal of Molecular Sciences, 22(15), 7770. https://doi.org/10.3390/ijms22157770
Yousefi, B., Akbari, H., & Maldague, X. P. (2020). Detecting vasodilation as potential diagnostic biomarker in breast cancer using deep learning-driven thermomics. Biosensors, 10(11), 164. https://doi.org/10.3390/bios10110164
Zekavat, S. M., Raghu, V. K., Trinder, M., Ye, Y., Koyama, S., Honigberg, M. C., ... & Natarajan, P. (2022). Deep learning of the retina enables phenome-and genome-wide analyses of the microvasculature. Circulation, 145(2), 134-150. https://doi.org/10.1161/CIRCULATIONAHA.121.057709
Zhang, M. J., Zhang, Y., Fei, X. Y., Luo, Y., Ru, Y., Jiang, J. S., ... & Wang, R. P. (2024). Identification of Angiogenesis-Related Genes and Molecular Subtypes for Psoriasis Based on Random Forest Algorithm. Clinical and Experimental Immunology, uxae052. https://doi.org/10.1093/cei/uxae052
Zhang, Y., Wang, H., Oliveira, R. H. M., Zhao, C., & Popel, A. S. (2022). Systems biology of angiogenesis signaling: Computational models and omics. WIREs Mechanisms of Disease, 14(4), e1550. https://doi.org/10.1002/wsbm.1550
Zheng, C., Chen, X., Shuliang, H., & Mao, L. (2023). Challenges and developments in artificial intelligence-based algorithms for precision medicine and patient-specific predictive models. Expert Systems with Applications, 224, 119561. https://doi.org/10.1016/j.eswa.2023.119561