References
Abdul-Hamid, M., & Moustafa, N. (2013). Protective effect of curcumin on histopathology and ultrastructure of pancreas in the alloxan treated rats for induction of diabetes. The Journal of Basic & Applied Zoology, 66(4), 169–179. https://doi.org/10.1016/j.jobaz.2013.07.003
Ahmed, M. S., Massoud, A. H., Derbalah, A. S., Al-Brakati, A., Al-Abdawani, M. A., Eltahir, H. A., Yanai, T., & Elmahallawy, E. K. (2020). Biochemical and histopathological alterations in different tissues of rats due to repeated oral dose toxicity of cymoxanil. Animals, 10(12), 2205. https://doi.org/10.3390/ani10122205
Ahmed, O. M., Abdel Fattah, A. A., Abdul-Hamid, M., Abdel-Aziz, A. M., Sakr, H. I., Damanhory, A. A., Abdel-Kawi, S. H., Ghaboura, N., & Awad, M. M. Y. (2023). Antidiabetic and Liver Histological and Ultrastructural Effects of Cynara scolymus Leaf and Flower Head Hydroethanolic Extracts in Nicotinamide/Streptozotocin-Induced Diabetic Rats. Evidence-Based Complementary and Alternative Medicine, 2023, 1–13. https://doi.org/10.1155/2023/4223026
Al-Attar, A. M., & Zari, T. A. (2007). Modulatory effects of ginger and clove oils on physiological responses in streptozotocin-induced diabetic rats. https://doi.org/10.3923/ijp.2007.34.40
Alexander-Aguilera, A., Aguirre-Maldonado, I., Antolín, J. R., Toledo, L. N., Rodríguez, I. S., & Sánchez Otero, M. G. (2019). Effect of Litchi chinensis on adipose and hepatic tissues in rats with obesity and non-alcoholic fatty liver disease (NAFLD). Journal of the Saudi Society of Agricultural Sciences, 18(3), 235–240. https://doi.org/10.1016/j.jssas.2017.06.002
Asmah Rahmat, A. A. (2015). Effect of Pomegranate on Histopathology of Liver and Kidney on Generated Oxidative Stress Diabetic Induced Rats. Journal of Cytology & Histology, 6(1). https://doi.org/10.4172/2157-7099.1000294
Association, A. D. (2014). Diagnosis and classification of diabetes mellitus. Diabetes Care, 37(Supplement_1), S81–S90. https://doi.org/10.2337/dc14-S081
Association, A. D. (2015). 8. Cardiovascular disease and risk management. Diabetes Care, 38(Supplement_1), S49–S57. https://doi.org/10.2337/dc15-S011
Bhat, R. S., & Al-daihan, S. (2014). Antimicrobial activity of Litchi chinensis and Nephelium lappaceum aqueous seed extracts against some pathogenic bacterial strains. Journal of King Saud University-Science, 26(1), 79–82. https://doi.org/10.1016/j.jksus.2013.05.007
Birgani, G. A., Ahangarpour, A., Khorsandi, L., & Moghaddam, H. F. (2018). Anti-diabetic effect of betulinic acid on streptozotocin-nicotinamide induced diabetic male mouse model. Brazilian Journal of Pharmaceutical Sciences, 54(2). https://doi.org/10.1590/s2175-97902018000217171
Choi, S.-A., Lee, J. E., Kyung, M. J., Youn, J. H., Oh, J. Bin, & Whang, W. K. (2017). Anti-diabetic functional food with wasted litchi seed and standard of quality control. Applied Biological Chemistry, 60, 197–204. https://doi.org/10.1007/s13765-017-0269-9
de Rezende Queiroz, E., de Abreu, C. M. P., Rocha, D. A., Simão, A. A., Bastos, V. A. A., Botelho, L. N. S., & Braga, M. A. (2015). Anti-nutritional compounds in fresh and dried lychee fractions (Litchi chinensis Sonn.). African Journal of Agricultural Research, 10(6), 499–504.
Emanuele, S., Lauricella, M., Calvaruso, G., D’Anneo, A., & Giuliano, M. (2017). Litchi chinensis as a Functional Food and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways. Nutrients, 9(9), 992. https://doi.org/10.3390/nu9090992
Eraslan, G., Kanbur, M., & Silici, S. (2007). Evaluation of propolis effects on some biochemical parameters in rats treated with sodium fluoride. Pesticide Biochemistry and Physiology, 88(3), 273–283. https://doi.org/10.1016/j.pestbp.2007.01.002
Furman, B. L. (2015). Streptozotocin-induced diabetic models in mice and rats. Current Protocols in Pharmacology, 70(1), 5–47. https://doi.org/10.1002/0471141755.ph0547s70
Graham, M. L., Janecek, J. L., Kittredge, J. A., Hering, B. J., & Schuurman, H.-J. (2011). The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comparative Medicine, 61(4), 356–360. https://pubmed.ncbi.nlm.nih.gov/22330251
Gupta, P., Bhatnagar, I., Kim, S.-K., Verma, A. K., & Sharma, A. (2014). In-vitro cancer cell cytotoxicity and alpha amylase inhibition effect of seven tropical fruit residues. Asian Pacific Journal of Tropical Biomedicine, 4, S665–S671. https://doi.org/10.12980/apjtb.4.2014b433
Habib, S. L., & Rojna, M. (2013). Diabetes and risk of cancer. International Scholarly Research Notices, 2013. https://doi.org/10.1155/2013/583786
Hung, A. M., Roumie, C. L., Greevy, R. A., Liu, X., Grijalva, C. G., Murff, H. J., Ikizler, T. A., & Griffin, M. R. (2012). Comparative effectiveness of incident oral antidiabetic drugs on kidney function. Kidney International, 81(7), 698–706. https://doi.org/10.1038/ki.2011.444
Jaiswal, Y. S., Tatke, P. A., Gabhe, S. Y., & Vaidya, A. B. (2017). Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n -streptozotocin diabetic rats. Journal of Traditional and Complementary Medicine, 7(4), 421–427. https://doi.org/10.1016/j.jtcme.2016.11.007
Jeon, C. Y., Roberts, C. K., Crespi, C. M., & Zhang, Z.-F. (2013). Elevated liver enzymes in individuals with undiagnosed diabetes in the U.S. Journal of Diabetes and Its Complications, 27(4), 333–339. https://doi.org/10.1016/j.jdiacomp.2013.04.005
Jinato, T., Chayanupatkul, M., Dissayabutra, T., Chutaputti, A., Tangkijvanich, P., & Chuaypen, N. (2022). Litchi-Derived Polyphenol Alleviates Liver Steatosis and Gut Dysbiosis in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Double-Blinded, Placebo-Controlled Study. Nutrients, 14(14), 2921. https://doi.org/10.3390/nu14142921
Khandelwal, P., & Khanna, S. (2020). Diabetic peripheral neuropathy: An insight into the pathophysiology, diagnosis, and therapeutics. In Wound Healing, Tissue Repair, and Regeneration in Diabetes (pp. 49–77). Elsevier. https://doi.org/10.1016/B978-0-12-816413-6.00004-6
Klaman, L. D., Boss, O., Peroni, O. D., Kim, J. K., Martino, J. L., Zabolotny, J. M., Moghal, N., Lubkin, M., Kim, Y.-B., & Sharpe, A. H. (2000). Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Molecular and Cellular Biology. 20(15), 5479–5489. https://doi.org/10.1128/mcb.20.15.5479-5489.2000
Kolset, S. O., Reinholt, F. P., & Jenssen, T. (2012). Diabetic Nephropathy and Extracellular Matrix. Journal of Histochemistry & Cytochemistry, 60(12), 976–986. https://doi.org/10.1369/0022155412465073
Li, F., Zhang, Y., & Zhong, Z. (2011). Antihyperglycemic effect of Ganoderma lucidum polysaccharides on streptozotocin-induced diabetic mice. International Journal of Molecular Sciences, 12(9), 6135–6145. https://doi.org/10.3390/ijms12096135
Lin, C.-C., Chung, Y.-C., & Hsu, C.-P. (2013). Anti-cancer potential of litchi seed extract. World J Exp Med 2013; 3: 56, 61. https://doi.org/10.5493/wjem.v3.i4.56
Mahran, H. N., Saber, L. M., Alghaithy, A. A., & Elareefy, A. A. (2017). The role of elevated alanine aminotransferase (ALT), FasL and atherogenic dyslipidemia in type II diabetes mellitus. Journal of Taibah University Medical Sciences, 12(1), 8–13. https://doi.org/10.1016/j.jtumed.2016.10.002
Mamun, F., Rahman, Md. M., Zamila, M., Subhan, N., Hossain, H., Raquibul Hasan, S. M., Alam, M. A., & Haque, Md. A. (2020). Polyphenolic compounds of litchi leaf augment kidney and heart functions in 2K1C rats. Journal of Functional Foods, 64, 103662. https://doi.org/10.1016/j.jff.2019.103662
Noh, J. S., Kim, H. Y., Park, C. H., Fujii, H., & Yokozawa, T. (2010). Hypolipidaemic and antioxidative effects of oligonol, a low-molecular-weight polyphenol derived from lychee fruit, on renal damage in type 2 diabetic mice. British Journal of Nutrition, 104(8), 1120–1128. https://doi.org/10.1017/S0007114510001819
Rados, D. V., Pinto, L. C., Remonti, L. R., Leitao, C. B., & Gross, J. L. (2016). The association between sulfonylurea use and all-cause and cardiovascular mortality: a meta-analysis with trial sequential analysis of randomized clinical trials. PLoS Medicine, 13(4), e1001992. https://doi.org/10.1371/journal.pmed.1001992
Ramadan, B. K., Schaalan, M. F., & Tolba, A. M. (2017). Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan induced diabetic rats. BMC Complementary and Alternative Medicine, 17(1), 37. https://doi.org/10.1186/s12906-016-1530-1
Ren, S., Xu, D., Pan, Z., Gao, Y., Jiang, Z., & Gao, Q. (2011). Two flavanone compounds from litchi (Litchi chinensis Sonn.) seeds, one previously unreported, and appraisal of their α-glucosidase inhibitory activities. Food Chemistry, 127(4), 1760–1763. https://doi.org/10.1016/j.foodchem.2011.02.054
Roslan, J., Giribabu, N., Karim, K., & Salleh, N. (2017). Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomedicine & Pharmacotherapy, 86, 570–582. https://doi.org/10.1016/j.biopha.2016.12.044
Rui, L. (2014). Energy Metabolism in the Liver. In Comprehensive Physiology (pp. 177–197). Wiley. https://doi.org/10.1002/cphy.c130024
Sharabi, K., Tavares, C. D. J., Rines, A. K., & Puigserver, P. (2015). Molecular pathophysiology of hepatic glucose production. Molecular Aspects of Medicine, 46, 21–33. https://doi.org/10.1016/j.mam.2015.09.003
Shirali, S., Zahra Bathaie, S., & Nakhjavani, M. (2013). Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. Phytotherapy Research, 27(7), 1042–1047. https://doi.org/10.1002/ptr.4836
Suckling, R., & Gallagher, H. (2012). Chronic kidney disease, diabetes mellitus and cardiovascular disease: risks and commonalities. Journal of Renal Care, 38, 4–11. https://doi.org/10.1111/j.1755-6686.2012.00274.x
Thakkar, B., Aronis, K. N., Vamvini, M. T., Shields, K., & Mantzoros, C. S. (2013). Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: a meta-analysis using primary data of published studies. Metabolism, 62(7), 922–934. https://doi.org/10.1016/j.metabol.2013.01.014
Van de Laar, F. A., Lucassen, P. L., Akkermans, R. P., van de Lisdonk, E. H., Rutten, G. E., & van Weel, C. (2005). α-Glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care, 28(1), 154–163. https://doi.org/10.1002/14651858.cd005061.pub2
Vergès, B. (2015). Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia, 58(5), 886–899. https://doi.org/10.1007/s00125-015-3525-8
Wang, L., Lou, G., Ma, Z., & Liu, X. (2011). Chemical constituents with antioxidant activities from litchi (Litchi chinensis Sonn.) seeds. Food Chemistry, 126(3), 1081–1087. https://doi.org/10.1016/j.foodchem.2010.11.133
Xu, X., Xie, H., Hao, J., Jiang, Y., & Wei, X. (2010). Eudesmane sesquiterpene glucosides from lychee seed and their cytotoxic activity. Food Chemistry, 123(4), 1123–1126. https://doi.org/10.1016/j.foodchem.2010.05.073
Zhang, W. R., & Parikh, C. R. (2019). Biomarkers of Acute and Chronic Kidney Disease. Annual Review of Physiology, 81(1), 309–333. https://doi.org/10.1146/annurev-physiol-020518-114605. https://doi.org/10.1146/annurev-physiol-020518-114605
Zhang, Y., Jin, D., An, X., Duan, L., Duan, Y., & Lian, F. (2021). Lychee Seed as a Potential Hypoglycemic Agent, and Exploration of its Underlying Mechanisms. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.737803