References
Abadi, A. J., Mirzaei, S., Mahabady, M. K., Hashemi, F., Zabolian, A., Hashemi, F., ... & Sethi, G. (2022). Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytotherapy Research, 36(1), 189-213.
Agrawal, N. D., Nirala, S. K., Bhadauria, M., Srivastava, S., & Shukla, S. (2019). Protective potential of Moringa oleifera Lam. along with curcumin and piperine against beryllium-induced alterations in hepatorenal biochemistry and ultramorphology in rats. Indian Journal of Biochemistry and Biophysics (IJBB), 56(1), 70-80.
Ak, T., & Gülçin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-biological interactions, 174(1), 27-37.
Akter, T., Zahan, M. S., Nawal, N., Rahman, H., Tanjum, T. N., Arafat, K. I., ... & Uddin, M. J. (2023). Potentials of curcumin against polycystic ovary syndrome: Pharmacological insights and therapeutic promises. Heliyon,9,1-16.
Alibolandi, M., Hoseini, F., Mohammadi, M., Ramezani, P., Einafshar, E., Taghdisi, S. M., ... & Abnous, K. (2018). Curcumin-entrapped MUC-1 aptamer targeted dendrimer-gold hybrid nanostructure as a theranostic system for colon adenocarcinoma. International journal of pharmaceutics, 549(1-2), 67-75.
Alizadeh, A. M., Sadeghizadeh, M., Najafi, F., Ardestani, S. K., Erfani-Moghadam, V., Khaniki, M., ... & Mohagheghi, M. A. (2015). Encapsulation of curcumin in diblock copolymer micelles for cancer therapy. BioMed research international, 2015,1-14.
Allegra, A., Di Gioacchino, M., Tonacci, A., Musolino, C., & Gangemi, S. (2020). Immunopathology of SARS-CoV-2 infection: immune cells and mediators, prognostic factors, and immune-therapeutic implications. International journal of molecular sciences, 21(13), 1-13.
Almatroodi, S. A., Syed, M. A.,…& Rahmani, A. H. (2021). Potential therapeutic targets of Curcumin, most abundant active compound of turmeric spice: Role in the management of various types of cancer. Recent patents on anti-cancer drug discovery,16(1), 3-29.
Alven, S., & Aderibigbe, B. A. (2020). Efficacy of polymer-based nanocarriers for co-delivery of curcumin and selected anticancer drugs. Nanomaterials, 10(8), 1-28.
Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer letters, 267(1), 133-164.
Aromokeye, R., & Si, H. (2022). Combined Curcumin and Luteolin synergistically inhibit Colon Cancer Associated with Notch1 and TGF-β signaling pathways in cultured cells and xenograft mice. Cancers, 14(12), 1-14.
Asif, H. M., Zafar, F., Ahmad, K., Iqbal, A., Shaheen, G., Ansari, K. A., & Ghaffar, S. (2023). Synthesis, characterization and evaluation of anti-arthritic and anti-inflammatory potential of curcumin loaded chitosan nanoparticles. Scientific Reports, 13, 1-10.
Askarizadeh, A., Barreto, G. E., Henney, N. C., Majeed, M., & Sahebkar, A. (2020). Neuroprotection by curcumin: A review on brain delivery strategies. International Journal of Pharmaceutics, 585, 1-59.
Ayubi, M.; Karimi, M.; Abdpour, S.; Rostamizadeh, K.; Parsa, M.; Zamani, M.; Saedi, A. Magnetic nanoparticles decorated with PEGylated curcumin as dual targeted drug delivery: Synthesis, toxicity and biocompatibility study. Mater. Sci. Eng. C 2019, 104, 109810.
Bai, L., Xu, D., Zhou, Y. M., Zhang, Y. B., Zhang, H., Chen, Y. B., & Cui, Y. L. (2022). Antioxidant activities of natural polysaccharides and their derivatives for biomedical and medicinal applications. Antioxidants, 11(12), 1-31.
Ban, C., Jo, M., Park, Y. H., Kim, J. H., Han, J. Y., Lee, K. W., ... & Choi, Y. J. (2020). Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food chemistry, 302, 125328.
Barzegar, A. (2012). The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food chemistry, 135(3), 1369-1376.
Barzegar, A., & Moosavi-Movahedi, A. A. (2011). Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PloS one, 6(10), 1-7.
Bhandarkar, S. S., Arbiser, J. L. (2007). Curcumin as an inhibitor of angiogenesis. The molecular targets and therapeutic uses of curcumin in health and disease, 595,185-195.
Bnyan, R., Khan, I., Ehtezazi, T., Saleem, I., Gordon, S., O'Neill, F., & Roberts, M. (2018). Surfactant effects on lipid-based vesicles properties. Journal of pharmaceutical sciences, 107(5), 1237-1246.
Boccellino, M., Ambrosio, P., Ballini, A., De Vito, D., Scacco, S., Cantore, S., ... & Di Domenico, M. (2022). The role of curcumin in prostate cancer cells and derived spheroids. Cancers, 14(14), 1-18.
Bratovcic, A. (2020). Antioxidant enzymes and their role in preventing cell damage. Acta Sci. Nutr. Health, 4, 1-7.
Cai, X. Z., Wang, J., Xiao-Dong, L., Wang, G. L., Liu, F. N., Cheng, M. S., & Li, F. (2009). Curcumin suppresses proliferation and invasion in human gastric cancer cells by down-regulation of PAK1 activity and cyclin D1 expression. Cancer biology & therapy, 8(14), 1360-1368.
Chen, H. W., Lee, J. Y., Huang, J. Y., Wang, C. C., Chen, W. J., Su, S. F., & Yang, P. C. (2008). Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer research, 68(18), 7428-7438.
Chen, X. P., Li, Y., Zhang, Y., & Li, G. W. (2019). Formulation, characterization and evaluation of curcumin-loaded PLGA-TPGS nanoparticles for liver cancer treatment. Drug design, development and therapy,13, 3569-3578.
Chen, Y., Deng, Y., Zhu, C., & Xiang, C. (2020). Anti-prostate cancer therapy: aptamer-functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomedicine & Pharmacotherapy, 127, 1-8.
Chirio, D., Peira, E., Dianzani, C., Muntoni, E., Gigliotti, C. L., Ferrara, B., ... & Gallarate, M. (2019). Development of solid lipid nanoparticles by cold dilution of microemulsions: curcumin loading, preliminary in vitro studies, and biodistribution. Nanomaterials, 9(2), 1-17.
Choi, B. H., Kim, C. G., Lim, Y., Shin, S. Y., & Lee, Y. H. (2008). Curcumin down-regulates the multidrug-resistance mdr1b gene by inhibiting the PI3K/Akt/NFκB pathway. Cancer letters, 259(1), 111-118.
Chou, Y. T., Koh, Y. C., Nagabhushanam, K., Ho, C. T., & Pan, M. H. A natural degradant of curcumin, feruloyl acetone inhibits cell proliferation via inducing cell cycle arrest and a mitochondrial apoptotic pathway in HCT116 colon cancer cells. Molecules, 2021,26(16), 1-16.
Chuan, L. I., Zhang, J., Yu-Jiao, Z. U., Shu-Fang, N. I. E., Jun, C. A. O., Qian, W. A. N. G., ... & Shu, W. A. N. G. (2015). Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chinese journal of natural medicines, 13(9), 641-652.
Divya, C. S., Pillai, M. R. (2006) Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFκB and AP-1 translocation, and modulation of apoptosis. Molecular Carcinogenesis: Published in cooperation with the University of Texas MD Anderson Cancer Center, 45, 320-332.
El-Saadony, M. T., Yang, T., Korma, S. A., Sitohy, M., El-Mageed, A., Taia, A., & Saad, A. M. (2023). Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Frontiers in Nutrition, 9, 1-34.
Feng, T., Wei, Y., Lee, R. J., & Zhao, L. (2017). Liposomal curcumin and its application in cancer. International journal of nanomedicine,12, 6027-6044.
Ghareghomi, S., Rahban, M., Moosavi-Movahedi, Z., Habibi-Rezaei, M., Saso, L., & Moosavi-Movahedi, A. A. (2021). The potential role of curcumin in modulating the master antioxidant pathway in diabetic hypoxia-induced complications. Molecules, 26(24), 1-26.
Ghasemi, F., Shafiee, M., Banikazemi, Z., Pourhanifeh, M. H., Khanbabaei, H., Shamshirian, A., & Mirzaei, H. (2019). Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathology-Research and Practice, 215(10), 1-21.
Guimarães, M. R., Coimbra, L. S., de Aquino, S. G., Spolidorio, L. C., Kirkwood, K. L., Rossa Jr, C. (2011). Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo. Journal of periodontal research, 46(2), 269-279.
Hafez Ghoran, S., Calcaterra, A., Abbasi, M., Taktaz, F., Nieselt, K., & Babaei, E. (2022). Curcumin-based Nano formulations: A promising adjuvant towards cancer treatment. Molecules, 27(16), 1-29.
Han, Z., Zhang, J., Zhang, K., & Zhao, Y. (2020). Curcumin inhibits cell viability, migration, and invasion of thymic carcinoma cells via downregulation of microRNA-27a. Phytotherapy Research, 34(7), 1629-1637.
Han, Z., Zhang, J., Zhang, K., Zhao, Y. (2020). Curcumin inhibits cell viability, migration, and invasion of thymic carcinoma cells via downregulation of microRNA-27a. Phytotherapy Research, 34(7), 1629-1637.
Hashemi, M., Mirzaei, S., Barati, M., Hejazi, E. S., Kakavand, A., Entezari, M., & Sethi, G. (2022). Curcumin in the treatment of urological cancers: Therapeutic targets, challenges and prospects. Life Sciences,309, 1-16.
Hatcher, H., Planalp, R., Cho, J., Torti, F. M., Torti, S. V. (2008). Curcumin: from ancient medicine to current clinical trials. Cellular and molecular life sciences, 65, 1631-1652.
Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A Review of Its Effects on Human Health. Foods (Basel, Switzerland), 6(10),92. https://doi.org/10.3390/foods6100092
Hsieh, M. T., Chang, L. C., Hung, H. Y., Lin, H. Y., Shih, M. H., Tsai, C. H., ... & Lee, K. H. (2017). New bis (hydroxymethyl) alkanoate curcuminoid derivatives exhibit activity against triple-negative breast cancer in vitro and in vivo. European Journal of Medicinal Chemistry, 131, 141-151.
Huang, T., Zhao, J., Guo, D., Pang, H., Zhao, Y., & Song, J. (2018). Curcumin mitigates axonal injury and neuronal cell apoptosis through the PERK/Nrf2 signalling pathway following diffuse axonal injury. Neuroreport, 29(8), 661-667.
Indira Priyadarsini, K. (2013). Chemical and structural features influencing the biological activity of curcumin. Current pharmaceutical design, 19(11), 2093-2100.
Jakubczyk, K., Druzga, A., Katarzyna, J., & Skonieczna-Zydecka, K. (2020). Antioxidant potential of curcumin—A meta-analysis of randomized clinical trials. Antioxidants, 9(11), 1-13.
Jia, G., Han, Y., An, Y., Ding, Y., He, C., Wang, X., & Tang, Q. (2018). NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials, 178, 302-316.
Jiang, K., Shen, M., & Xu, W. (2018). Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: in vitro/vivo evaluation. International journal of nanomedicine,13, 2561-2569.
Jiang, K., Shen, M., & Xu, W. (2018). Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: in vitro/vivo evaluation. International journal of nanomedicine, 2561-2569.
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 1-21.
Jung, J., Ku, M., Jeong, S., Yoon, N., Park, J. H., Youn, H. S., ... & Seo, S. (2023). Antioxidative Impact of Phenolics-Loaded Nanocarriers on Cytoskeletal Network Remodelling of Invasive Cancer Cells. ACS Applied Materials & Interfaces, 15(29), 34462-34474.
Karimi, A., Pourreza, S., Vajdi, M., Mahmoodpoor, A., Sanaie, S., Karimi, M., & Tarighat-Esfanjani, A. (2022). Evaluating the effects of curcumin nanomicelles on clinical outcome and cellular immune responses in critically ill sepsis patients: A randomized, double-blind, and placebo-controlled trial. Frontiers in Nutrition, 9, 1-12.
Karthikeyan, A., Senthil, N., Min, T. (2020). Nanocurcumin: A promising candidate for therapeutic applications. Frontiers in Pharmacology, 11,1-24.
Katsori, A. M., Palagani, A., Bougarne, N., Hadjipavlou-Litina, D., Haegeman, G., & Vanden Berghe, W. (2015). Inhibition of the NF-κB signaling pathway by a novel heterocyclic curcumin analogue. Molecules, 20(1), 863-878.
Khan, K., Quispe, C., Javed, Z., Iqbal, M. J., Sadia, H., Raza, S., & Sharifi-Rad, J. (2020). Resveratrol, curcumin, paclitaxel and miRNAs mediated regulation of PI3K/Akt/mTOR pathway: go four better to treat bladder cancer. Cancer Cell International, 20, 1-19.
Khan, M. M., Madni, A., Tahir, N., Parveen, F., Khan, S., Jan, N., ... & Khan, M. I. (2020). Co-delivery of curcumin and cisplatin to enhance cytotoxicity of cisplatin using lipid-chitosan hybrid nanoparticles. International Journal of Nanomedicine,15, 2207-2217.
Kharat, P. B., Somvanshi, S. B., Khirade, P. P., & Jadhav, K. M. (2020). Induction heating analysis of surface-functionalized nanoscale CoFe2O4 for magnetic fluid hyperthermia toward noninvasive cancer treatment. ACS omega, 5(36), 23378-23384.
Klaunig, J. E. (2018). Oxidative stress and cancer. Current pharmaceutical design, 24(40), 4771-4778.
Kouhpeikar, H., Butler, A. E., Bamian, F., Barreto, G. E., Majeed, M., & Sahebkar, A. (2019). Curcumin as a therapeutic agent in leukemia. Journal of cellular physiology, 234(8), 12404-12414.
Kubczak, M., Szustka, A., & Rogalinska, M. (2021). Molecular targets of natural compounds with anti-cancer properties. International Journal of Molecular Sciences, 22(24), 1-27.
Kumbar, V. M., Muddapur, U., Bin Muhsinah, A., Alshehri, S. A., Alshahrani, M. M., Almazni, I. A., ... & Shaikh, I. A. (2022). Curcumin-encapsulated nanomicelles improve cellular uptake and cytotoxicity in cisplatin-resistant human oral cancer cells. Journal of Functional Biomaterials, 13(4), 1-22.
Kuo, Y. C., Wang, L. J., Rajesh, R. (2019). Targeting human brain cancer stem cells by curcumin-loaded nanoparticles grafted with anti-aldehyde dehydrogenase and sialic acid: Colocalization of ALDH and CD44. Materials Science and Engineering: C, 102, 362-372.
Li, H., Zhang, N., Hao, Y., Wang, Y., Jia, S., Zhang, H., ... & Zhang, Z. (2014). Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug delivery, 21(5), 379-387.
Liu, Z., Zhu, Y. Y., Li, Z. Y., & Ning, S. Q. (2016). Evaluation of the efficacy of paclitaxel with curcumin combination in ovarian cancer cells. Oncology letters, 12(5), 3944-3948.
Lopes-Rodrigues, V., Sousa, E., & Vasconcelos, M. H. (2016). Curcumin as a modulator of P-glycoprotein in cancer: challenges and perspectives. Pharmaceuticals, 9(4), 1-11.
Mahmoud, K., Swidan, S., El-Nabarawi, M., & Teaima, M. (2022). Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: A comprehensive review on targeting and recent advances. Journal of Nanobiotechnology, 20(1), 1-42.
Mahmud, M., Piwoni, A., Filiczak, N., Janicka, M., & Gubernator, J. (2016). Long-circulating curcumin-loaded liposome formulations with high incorporation efficiency, stability and anticancer activity towards pancreatic adenocarcinoma cell lines in vitro. PloS one, 11(12), 1-23.
Mansouri, K., Rasoulpoor, S., Daneshkhah, A., Abolfathi, S., Salari, N., Mohammadi, M., ... & Shabani, S. (2020). Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC cancer, 20, 1-11.
Mundekkad, D.; Cho, W.C. Applications of Curcumin and Its Nanoforms in the Treatment of Cancer. Pharmaceutics 2023, 15, 2223. https://doi.org/10.3390/pharmaceutics15092223
Nagaraju, G. P., Benton, L., Bethi, S. R., Shoji, M., & El-Rayes, B. F. (2019). Curcumin analogs: Their roles in pancreatic cancer growth and metastasis. International Journal of Cancer, 145(1), 10-19.
Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of curcumin: Mini perspective. Journal of medicinal chemistry, 60(5), 1620-1637.
Nguyen, N. M., Vu, D. M., Tran, M. D., & Ta, V. T. (2021). On-demand release of drug from magnetic nanoparticle-loaded alginate beads. Journal of Analytical Methods in Chemistry, 2021,1-7.
Paliwal, R., Paliwal, S. R., Kenwat, R., Kurmi, B. D., & Sahu, M. K. (2020). Solid lipid nanoparticles: A review on recent perspectives and patents. Expert opinion on therapeutic patents, 30(3), 179-194.
Pan, R., Zeng, Y., Liu, G., Wei, Y., Xu, Y., & Tao, L. (2020). Curcumin–polymer conjugates with dynamic boronic acid ester linkages for selective killing of cancer cells. Polymer Chemistry, 11(7), 1321-1326.
Parthiban, A., Sivasankar, R., Rajdev, B., Asha, R. N., Jeyakumar, T. C., Periakaruppan, R., & Naidu, V. G. M. (2022). Synthesis, in vitro, in silico and DFT studies of indole curcumin derivatives as potential anticancer agents. Journal of Molecular Structure, 1270, 1-30.
Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., ... & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology, 16(1), 1-33.
Purushothaman, B. K., Maheswari, P. U., & Begum, K. M. S. (2019). Magnetic assisted curcumin drug delivery using folate receptor targeted hybrid casein-calcium ferrite nanocarrier. Journal of Drug Delivery Science and Technology, 52, 509-520.
Rahmani, A. H., Alsahli, M. A., Aly, S. M., Khan, M. A., & Aldebasi, Y. H. (2018). Role of curcumin in disease prevention and treatment. Advanced biomedical research, 7,1-9.
Rao, W., Zhang, W., Poventud-Fuentes, I., Wang, Y., Lei, Y., Agarwal, P., ... & He, X. (2014). Thermally responsive nanoparticle-encapsulated curcumin and its combination with mild hyperthermia for enhanced cancer cell destruction. Acta Biomaterialia, 10(2), 831-842.
Rodrigues, F. C., Kumar, N. A., & Thakur, G. (2019). Developments in the anticancer activity of structurally modified curcumin: An up-to-date review. European journal of medicinal chemistry, 177, 76-104.
Sachithanandam, V., Lalitha, P., Parthiban, A., Muthukumaran, J., Jain, M., Misra, R., ... & Ramesh, R. (2022). A comprehensive in silico and in vitro studies on quinizarin: A promising phytochemical derived from Rhizophora mucronata Lam. Journal of Biomolecular Structure and Dynamics, 40(16), 7218-7229.
Sadeghi-Abandansari, H., Pakian, S., Nabid, M. R., Ebrahimi, M., & Rezalotfi, A. (2021). Local co-delivery of 5-fluorouracil and curcumin using Schiff's base cross-linked injectable hydrogels for colorectal cancer combination therapy. European Polymer Journal, 157, 1-13.
Sahebkar, A., Serban, M. C., Ursoniu, S., & Banach, M. (2015). Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. Journal of functional foods, 18, 898-909.
Salahshoor, M., Mohamadian, S., Kakabaraei, S., Roshankhah, S., & Jalili, C. (2016). Curcumin improves liver damage in male mice exposed to nicotine. Journal of traditional and complementary medicine, 6(2), 176-183.
Samarghandian, S., Azimi-Nezhad, M., Farkhondeh, T., & Samini, F. (2017). Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomedicine & Pharmacotherapy, 87, 223-229.
Satyabhama, M., Priya Dharshini, L. C., Karthikeyan, A., Kalaiselvi, S., & Min, T. (2022). The Credible Role of Curcumin in Oxidative Stress-Mediated Mitochondrial Dysfunction in Mammals. Biomolecules, 12(10), 1-15.
Senturk, F. (2023). Hyperthermia efficacy of PEGylated-PLGA coated monodisperse iron oxide nanoparticles. Hittite Journal of Science and Engineering, 10(2), 153-159.
Senturk, F., & Cakmak, S. (2023). Fabrication of curcumin-loaded magnetic PEGylated-PLGA nanocarriers tagged with GRGDS peptide for improving anticancer activity. MethodsX, 10, 1-11.
Senturk, F., Çakmak, S., & Ozturk, G. G. (2019). Synthesis and characterization of oleic acid coated magnetic nanoparticles for hyperthermia applications. Natural and Applied Sciences Journal, 2(2), 16-29.
Senturk, F., Cakmak, S., Kocum, I. C., Gumusderelioglu, M., & Ozturk, G. G. (2021). GRGDS-conjugated and curcumin-loaded magnetic polymeric nanoparticles for the hyperthermia treatment of glioblastoma cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 622, 1-15.
Senturk, F., Kocum, I. C., & Guler Ozturk, G. (2021). Stepwise implementation of a low-cost and portable radiofrequency hyperthermia system for in vitro/in vivo cancer studies. Instrumentation Science & Technology, 49(6), 629-641.
Sheybani, N. D., Batts, A. J., Mathew, A. S., Thim, E. A., & Price, R. J. (2020). Focused ultrasound hyperthermia augments release of glioma-derived extracellular vesicles with differential immunomodulatory capacity. Theranostic, 10(16), 7436-7447.
Shishodia, S., Chaturvedi, M. M., & Aggarwal, B. B. (2007). Role of curcumin in cancer therapy. Current problems in cancer, 31(4), 243-305.
Silvestro, S., Sindona, C., Bramanti, P., Mazzon, E. (2021). A state of the art of antioxidant properties of curcuminoids in neurodegenerative diseases. International Journal of Molecular Sciences, 22(6), 1-27.
Soni, V. K., Shukla, D., Kumar, A., & Vishvakarma, N. K. (2020). Curcumin circumvent lactate-induced chemoresistance in hepatic cancer cells through modulation of hydroxycarboxylic acid receptor-1. The International Journal of Biochemistry & Cell Biology, 123, 1-30.
Sun, J., Zhao, Y., Hu, J. (2013). Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PloS one, 8, 1-9.
Tang, J. C., Shi, H. S., Wan, L. Q., Wang, Y. S., & Wei, Y. Q. (2013). Enhanced antitumor effect of curcumin liposomes with local hyperthermia in the LL/2 model. Asian Pacific Journal of Cancer Prevention, 14(4), 2307-2310.
Termini, D., Den Hartogh, D. J., Jaglanian, A., Tsiani, E., (2020). Curcumin against prostate cancer: current evidence. Biomolecules, 10, 1-40.
Tsuchida, K., Tsujita, T., Hayashi, M., Ojima, A., Keleku-Lukwete, N., Katsuoka, F., ... & Yamamoto, M. (2017). Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radical Biology and Medicine, 103, 236-247.
Udompornmongkol, P., & Chiang, B. H. (2015). Curcumin-loaded polymeric nanoparticles for enhanced anti-colorectal cancer applications. Journal of biomaterials applications, 30(5), 537-546.
Vaiserman, A., Koliada, A., Zayachkivska, A., Lushchak, O. (2020). Curcumin: A therapeutic potential in ageing-related disorders. Pharma Nutrition, 14, 30051-30057.
Venkatas, J., Daniels, A., & Singh, M. (2022). The Potential of Curcumin-Capped Nanoparticle Synthesis in Cancer Therapy: A Green Synthesis Approach. Nanomaterials, 12(18), 3201.
Wang, M., Jiang, S., Zhou, L., Yu, F., Ding, H., Li, P., ... & Wang, K. (2019). Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signalling pathways and miRNAs. International journal of biological sciences, 15(6), 1200-1214.
Wang, M., Jiang, S., Zhou, L., Yu, F., Ding, H., Li, P., ... & Wang, K. (2019). Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signaling pathways and miRNAs. International journal of biological sciences, 15(6), 1200-1214.
Wang, W. H., Chen, J., Zhang, B. R., Lu, S. J., Wang, F., Peng, L., & Sun, Y. Z. (2018). Curcumin inhibits proliferation and enhances apoptosis in A549 cells by downregulating lncRNA UCA1. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 73(7), 402-407.
Wang, W., Chen, T., Xu, H., Ren, B., Cheng, X., Qi, R., ... & Chen, C. (2018). Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules, 23(7), 1-13.
Wezgowiec, J., Tsirigotis-Maniecka, M., Saczko, J., Wieckiewicz, M., & Wilk, K. A. (2021). Microparticles vs. macroparticles as curcumin delivery vehicles: Structural studies and cytotoxic effect in human adenocarcinoma cell line (LoVo). Molecules, 26(19), 1-19.
Wilken, R., Veena, M. S., Wang, M. B., & Srivatsan, E. S. (2011). Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular cancer, 10(1), 1-19
Wu, Q., Ou, H., Shang, Y., Zhang, X., Wu, J., & Fan, F. (2021). Nanoscale formulations: incorporating curcumin into combination strategies for the treatment of lung cancer. Drug Design, Development and Therapy, 2695-2709.
Yodkeeree, S., Ampasavate, C., Sung, B., Aggarwal, B. B., & Limtrakul, P. (2010). Demethoxycurcumin suppresses migration and invasion of MDA-MB-231 human breast cancer cell line. European journal of pharmacology, 627(1-3), 8-15.
Zhang, J., Huang, Y., Xu, J., Zhao, R., Xiong, C., Habu, J., & Luo, X. (2022). Global publication trends and research hotspots of curcumin application in tumor: A 20-year bibliometric approach. Frontiers in Oncology, 12, 1-15.
Zhang, Y., Yang, C., Wang, W., Liu, J., Liu, Q., Huang, F., ... & Liu, J. (2016). Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Scientific reports, 6(1), 1-12.
Zhao, L., Yang, C., Dou, J., Xi, Y., Lou, H., & Zhai, G. (2015). Development of RGD-functionalized PEG-PLA micelles for delivery of curcumin. Journal of biomedical nanotechnology, 11(3), 436-446.
Zhao, M. D., Li, J. Q., Chen, F. Y., Dong, W., Wen, L. J., Fei, W. D., & Zheng, C. H. (2019). Co-delivery of curcumin and paclitaxel by “core-shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. International journal of nanomedicine,14, 9453-9467.
Zheng, B., McClements, D. J. (2020). Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility, stability, and bioavailability. Molecules, 25(12), 1-25.
Zhu, X., Yu, Z., Feng, L., Deng, L., Fang, Z., Liu, Z., ... & Zheng, Y. (2021). Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer. Carbohydrate Polymers, 268, 1-18.
Zinatloo, A. S., & Taheri, Q. N. (2014). Inverse miniemulsion method for synthesis of gelatin nanoparticles in presence of CDI/NHS as a non-toxic cross-linking system.