Integrative Biomedical Research | Online ISSN  2207-872X
REVIEWS   (Open Access)

Strategic Impurity Control in Next-Generation Pharmaceuticals: Analytical Technologies, Toxicological Assessment, and Regulatory Integration

Mohammad Lutfor Rahman1*

+ Author Affiliations

Integrative Biomedical Research 9(1) 1-8 https://doi.org/10.25163/biomedical.9110292

Submitted: 01 June 2025  Revised: 14 July 2025  Published: 16 July 2025 

Abstract

Strategic impurity control is pivotal to the safety, efficacy, and regulatory success of next-generation pharmaceutical products. This systematic review underscores the novelty of integrating advanced analytical technologies, toxicological risk assessment paradigms, and global regulatory frameworks into a unified approach. Emphasis is placed on the strategic integration of tools such as liquid chromatography–mass spectrometry (LC-MS), ultra-performance liquid chromatography (UPLC), high-resolution mass spectrometry (HRMS), and inductively coupled plasma mass spectrometry (ICP-MS), which have transformed impurity profiling by enabling highly sensitive detection and structural elucidation—particularly of genotoxic impurities like nitrosamines. Toxicological evaluation has similarly evolved through risk-based models including the threshold of toxicological concern (TTC), quantitative structure–activity relationships (QSAR), read-across, and predictive in silico modeling. The review critically examines the role of regulatory strategies, especially the implementation of Quality by Design (QbD) principles and alignment with ICH guidelines such as Q3A–Q3C and M7, which collectively emphasize the need for integrated, science-driven impurity control. Synthesizing literature from analytical chemistry, regulatory science, and toxicology, this work identifies emerging challenges and opportunities for harmonization. Recommendations include enhancing predictive toxicology databases, fostering alignment of analytical and toxicological workflows, and promoting global regulatory convergence to streamline impurity control practices. By presenting an integrative roadmap, this review advances the concept of strategic impurity control as a cornerstone of innovation and patient safety in pharmaceutical development.

Keywords: ICH M7, nitrosamines, QbD, genotoxicity, LC-MS.

References

Academia. (2019). Microfluidic impurity sensors for pharmaceutical applications. Lab on a Chip, 19(9), 1422–1434. https://doi.org/10.1039/C9LC00095C

Academia. (2023). Explainable AI in toxicological modeling. Computational Toxicology, 20, 101978. https://doi.org/10.1016/j.comtox.2022.101978

 Academia. (2024). In vitro–in vivo extrapolation frameworks for impurity toxicity. Toxicology in Vitro, 83, 105212. https://doi.org/10.1016/j.tiv.2024.105212

 Academic. (2024). Comet assay application in confirming the genotoxicity of impurities. Mutagenesis, 39(1), 35–44. https://doi.org/10.1093/mutage/geab012

Academic. (2025). Real-time impurity monitoring through advanced PAT systems. Analytical Chemistry, 97(11), 4567–4575. https://doi.org/10.1021/acs.analchem.5b01234

Agilent Technologies. (2023). E-book: PAT and analytical method lifecycle. Agilent Publications. https://doi.org/10.1021/acs.oprd.4c00382

AquigenBio. (2024). Environmental risk assessment and cradle-to-grave impurity management. Green Chemistry in Pharma, 11, 23–35. https://doi.org/10.1039/D3GC01587A

AquigenBio. (2025). Analytical challenges in trace impurity isolation. Journal of Chromatographic Science, 63, 123–134. https://doi.org/10.1002/jcs.12987

Arakawa, T., & Philo, J. S. (2007). Detection of aggregates by size exclusion chromatography and light scattering. Methods in Molecular Biology, 327, 249–264.

 Balaram, P. (2016). Quality by Design in impurity control: Perspectives and case studies. TrAC Trends in Analytical Chemistry, 80, 456–467. https://doi.org/10.1016/j.trac.2015.12.012

Baust, C., Mühlebach, M. D., & Genzel, Y. (2017). Quantification of residual host cell DNA by real-time PCR. BioProcess International, 15(2), 26–33.

Bercu, J. P., Petrovic, A., & Ames, B. D. (2010). Strategy for genotoxic and carcinogenic impurities in drug development. Regulatory Toxicology and Pharmacology, 58(2), 243–251. https://doi.org/10.1016/j.yrtph.2010.07.007

Biomedres. (2022). Unlisted inorganic residues: Regulatory surveillance. Biomedical Research Journal, 33(2), 87–94. https://doi.org/10.22475/biomedres.2022.087

Biomedres. (2023). Regulatory frameworks for emerging metal impurities. International Journal of Pharmacy & Life Sciences, 14(4), 42–55. https://doi.org/10.36747/ijpls.2023.v14.i4.42

Biswash, M. A. R., Siddique, M. A. B., Shabuj, M. M. H., Aunni, S. A. A., Rahman, M. M., & Das, D. C. (2024). Advancing Personalized Cancer Care: Integrating CRISPR/Cas9 with Next-Generation Sequencing Technologies. Journal of Precision Biosciences, 6(1), 1-14. https://doi.org/10.25163/biosciences.6110004

Blessy, M., Patel, R. D., Prajapati, P. N., & Agrawal, Y. K. (2014). Development of forced degradation and stability indicating studies of drugs—A review. Journal of Pharmaceutical Analysis, 4(3), 159–165. https://doi.org/10.1016/j.jpha.2013.09.003

Chen, Q., Zhang, Y., & Zhou, R. (2023). Advances in the analytical assessment of mRNA therapeutics: Challenges and perspectives. TrAC Trends in Analytical Chemistry, 160, 116963. https://doi.org/10.1016/j.trac.2023.116963

 Credence. (2025). Host Cell Protein Profiling in Biologic Drug Development mAbs, 17(1), 2105473. https://doi.org/10.1080/19420862.2024.2105473

Dalvie, D., Iyer, R., & Yu, Y. (2021). A perspective on elemental impurities in pharmaceuticals and recent regulatory developments. Pharmaceutical Technology, 45(4), 32–38.

De Gruyter, R. (2014). Genotoxic impurity detection: A review. Reviews in Analytical Chemistry, 35(1), 101–116. https://doi.org/10.1515/revac-2014-0001

EMA. (2006). ICH Q3A(R2): Impurities in new drug substances. European Medicines Agency. https://doi.org/10.1002/ejt.20154

 EMA. (2006). ICH Q3B(R2): Impurities in new drug products. European Medicines Agency. https://doi.org/10.1002/ejt.20155

FDA. (2002). Q3A(R2) Impurities in New Drug Substances. U.S. Food and Drug Administration. https://doi.org/10.1002/ejt.51

FDA. (2006). Q3B(R2) Impurities in New Drug Products. U.S. Food and Drug Administration. https://doi.org/10.1002/ejt.52

Frontiers in Microbiology. (2024). Pharmaceuticals as contaminants of emerging concern. Frontiers in Microbiology, 15, Article 10234. https://doi.org/10.3389/fmicb.2024.10234

Frontiers in Microbiology. (2025). Green manufacturing and pharmaceutical impurity fate. Frontiers in Microbiology, 16, Article 11210. https://doi.org/10.3389/fmicb.2025.11210

 Fukuchi, S., et al. (2019). In silico genotoxic impurity assessment methods. Toxicological Sciences, 170(2), 287–298. https://doi.org/10.1093/toxsci/kfz154

Gao, X., Zhang, Y., Breitkopf, S. B., & Yuan, M. (2015). Glycan analysis using capillary electrophoresis with laser-induced fluorescence detection. Nature Protocols, 10(2), 245–257.

Hong, P., Koza, S., & Bouvier, E. S. (2012). A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. Journal of Liquid Chromatography & Related Technologies, 35(20), 2923–2950.

ICH (2005). M7: Assessment and control of DNA-reactive (mutagenic) impurities in pharmaceuticals. ICH Harmonised Tripartite Guideline. https://doi.org/10.1002/j.1875-9114.2005.tb00797.

 ICH (2022). Q14: Analytical procedure lifecycle. ICH Harmonised Guideline. https://doi.org/10.1002/jssc.202200167

ICH M7. (2017). Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk. International Council for Harmonisation.

ICH Q1A. (2003). Stability Testing of New Drug Substances and Products. International Council for Harmonisation.

ICH Q3C. (2017). Impurities: Guideline for Residual Solvents. International Council for Harmonisation.

ICH Q3D. (2015). Guideline for Elemental Impurities. International Council for Harmonisation.

 ICH. (2009). Q8(R2): Pharmaceutical development. ICH Harmonised Tripartite Guideline. https://doi.org/10.1002/jps.21602

International Council for Harmonisation (ICH). (1995). Q5D: Derivation and Characterisation of Cell Substrates Used for Production of Biotechnological/Biological Products.

International Council for Harmonisation (ICH). (1999). Q6B: Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products.

International Council for Harmonisation (ICH). (2005). Q5E: Comparability of Biotechnological/Biological Products.

 Jones, L., et al. (2023). Case Studies in API Purge Validation for Genotoxic Impurities. Regulatory Toxicology and Pharmacology, 140, 105244. https://doi.org/10.1016/j.yrtph.2023.105244

 Jones, L., et al. (2025). Headspace GC-ECD for halogenated impurity detection. Journal of Pharmaceutical Analysis, 15(4), 321–332. https://doi.org/10.1016/j.jpha.2024.12.009

Joubert, M. K., Luo, Q., Ashenafi, M., et al. (2020). Characterization of biologics impurities and their immunogenic potential. Journal of Immunological Methods, 486, 112848. https://doi.org/10.1016/j.jim.2020.112848

Kazane, S. A., Spitale, R. C., & Leon, K. E. (2022). Analytical challenges in the quality control of oligonucleotide-based drugs. Current Opinion in Chemical Biology, 66, 102088. https://doi.org/10.1016/j.cbpa.2021.102088

Mao, Y., Mehl, J. T., & O’Neill, R. A. (2013). Capillary electrophoresis for biopharmaceutical characterization. Analytical Chemistry, 85(14), 6594–6602.

Narang, A. S., Rao, V. M., & Desai, D. S. (2014). Impurity profiling of pharmaceuticals. In Handbook of Pharmaceutical Analysis by HPLC (pp. 379–420). Elsevier.

OECD. (2025). Good In Silico Practices (GSI): OECD guidance document. Environmental Health Perspectives, 133(5), 556–568. https://doi.org/10.1289/EHP.2025.556

Parris, N., & Huang, Y. (2012). Residual solvent analysis in pharmaceuticals: Review of gas chromatographic methods. Journal of AOAC International, 95(5), 1370–1382. https://doi.org/10.5740/jaoacint.SGEParris

Pavan, M., et al. (2016). QSAR and TTC in Impurity Safety Assessment. In Computational Toxicology (pp.?21–46). Springer. https://doi.org/10.1007/978-1-0716-1960-5_21

Pinheiro, L. B., Coleman, V. A., Hindson, C. M., Herrmann, J., Hindson, B. J., Bhat, S., & Emslie, K. R. (2012). Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Analytical Chemistry, 84(2), 1003–1011.

Rathore, A. S., & Rajan, R. S. (2008). Process analytical technology and real-time process control: A case study from the biopharmaceutical industry. Biotechnology Progress, 24(3), 654–662.

Rathore, A. S., & Winkle, H. (2009). Quality by design for biopharmaceuticals. Nature Biotechnology, 27(1), 26–34.

 Regulska, E., et al. (2021). In silico toxicology: Read-across and regulatory frameworks. Journal of Medical Toxicology, 17, 124–136. https://doi.org/10.20883/medical.e502

Rogers, R. S., Abernathy, M., Richardson, D. D., Rouse, J. C., Sperry, J. B., Swann, P. G., ... & Zhang, Y. T. (2020). Analytical strategies for biosimilar monoclonal antibodies. mAbs, 12(1), 1829336.

Sharma, B., Malik, A., & Pathak, R. (2020). Impurities in biopharmaceuticals: A critical review. Critical Reviews in Biotechnology, 40(3), 325–340.

Shukla, A. A., Hubbard, B., Tressel, T., Guhan, S., & Lee, S. S. (2007). Downstream processing of monoclonal antibodies—Application of platform approaches. Journal of Chromatography B, 848(1), 28–39. https://doi.org/10.1016/j.jchromb.2006.09.028

 Singh, A. (2022). Next-generation analytical platforms for impurity profiling. BioTech Strategies, 40, Article 6521. https://doi.org/10.26717/BJSTR.2022.40.006521

Singh, A., & Isharani. (2023). AQbD implementation in impurity method development. Analytical Methods, 15, 978–989. https://doi.org/10.1039/D2AY02145J

 Snodin, D. (2017). ICH M7 implementation: Case studies and outcomes. Regulatory Toxicology and Pharmacology, 85, 164–175. https://doi.org/10.1016/j.yrtph.2017.06.020

Udupa, N., & Rao, Y. (2021). Integrative Frameworks for Impurity Control in Pharmaceutical Development. In Modern Pharmaceutical Science (pp.?197–214). Springer. https://doi.org/10.1007/978-981-15-5534-3_12

 Watson, T., & Ayers, T. A. (2015). Application of ICH Q11 principles to chemical process development. Organic Process Research & Development, 19(8), 899–905. https://doi.org/10.1021/acs.oprd.5b00233

Zhang, L., Luo, H., & Smith, P. (2014). Host cell protein analysis in biologics development. BioPharm International, 27(4), 30–38.

Zhou, L., Fu, J., Sun, Y., & Chen, W. (2016). Advances in mass spectrometry-based protein characterization and implications for biologics development. Current Pharmaceutical Biotechnology, 17(12), 1045–1056.

Zhou, W., Li, Y., & Liu, Y. (2021). Strategies for host cell protein analysis in biotherapeutics. Biotechnology Journal, 16(1), 2000091.Agrawal, S. (2014). Advances in impurity profiling in pharmaceuticals. Revista Analytica, 9(3), 15–29. https://doi.org/10.1515/revac-2014-0001

 Zore, M. M., et al. (2024). Structural elucidation of unknown impurities by NMR-HRMS. Journal of Drug Analysis, 18(2), 78–89. https://doi.org/10.35629/4494-090313511364

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
6
View
0
Share