Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Deep Learning-Based Ovarian Cancer Subtype Classification Using VGG16 and MobileNetV2 with Squeeze-and-Excitation Blocks

Salman Mohammad Abdullah1, Abdullah Al Masum2, Nayem Uddin Prince3, Labonno Akter Mim4

+ Author Affiliations

Journal of Angiotherapy 8(8) 1-8 https://doi.org/10.25163/angiotherapy.889898

Submitted: 03 June 2024  Revised: 11 August 2024  Published: 15 August 2024 

Abstract

Background: Ovarian carcinoma remains one of the deadliest gynecological malignancies due to its heterogeneity and late-stage detection. Accurate classification of its subtypes—High-Grade Serous Carcinoma (HGSC), Clear-Cell Carcinoma (CC), Endometrioid Carcinoma (EC), Low-Grade Serous Carcinoma (LGSC), and Mucinous Carcinoma (MC)—is essential for tailored treatments, yet traditional histopathological methods often lack precision. This study aimed to develop a deep learning (DL) model to enhance ovarian cancer subtype classification using histopathological images. Methods: Histopathological images were collected from medical repositories, and data augmentation techniques were applied to increase dataset diversity. Two convolutional neural network (CNN) architectures, VGG16 and MobileNetV2, were fine-tuned using transfer learning to classify the subtypes. The models were pre-trained on the ImageNet dataset and evaluated through accuracy, precision, recall, F1-score, and ROC-AUC, with K-fold cross-validation ensuring robustness. Results: Results indicated that VGG16 improved classification over baseline CNN models, while MobileNetV2, with Squeeze-and-Excitation (SE) blocks, achieved the highest performance, offering greater accuracy and computational efficiency. MobileNetV2’s lightweight architecture captured intricate tissue patterns more effectively, making it the superior model. Conclusion: This study highlights the potential of advanced DL models, particularly MobileNetV2 with SE block attention, for improving ovarian cancer subtype classification. These findings offer promising implications for clinical practice and personalized treatment approaches. Future research should focus on larger datasets and integrating multimodal data for further advancements.

Keywords: Ovarian carcinoma, Deep learning, Convolutional neural networks, MobileNetV2, Transfer learning

References

Berek, J. S., & Hacker, N. F. (2015). Berek and Hacker's gynecologic oncology. Lippincott Williams & Wilkins.

Bowtell, D. D., Böhm, S., Ahmed, A. A., Aspuria, P. J., Bast, R. C., Beral, V., ... & Balkwill, F. R. (2015). Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nature Reviews Cancer, 15(11), 668-679.

Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyo, D., ... & G. P. (2018). Predicting mutations from histopathology images of lung cancer. Nature Medicine, 24(10), 1559-1567.

Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, N., Snuderl, M., Fenyo, D., ... & Tschumi, C. (2021). Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature Medicine, 24(10), 1559-1567.

Ehteshami Bejnordi, B., Veta, M., Johannes van Diest, P., van Ginneken, B., ... & Greene, C. S. (2017). Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, 318(22), 2199-2210.

Esteva, A., Chou, K., Yeung, S., Naik, N., Madani, A., Mottaghi, A., ... & Dean, J. (2021). Deep learning-enabled medical computer vision. NPJ Digital Medicine, 4(1), 1-9.

Fu, Y., Lei, Y., Wang, T., Curran, W. J., Liu, T., & Yang, X. (2020). Deep learning in medical image registration: A review. Physics in Medicine & Biology, 65(20), 20TR01.

Giordano, G., D'Adda, T., Merisio, C., & Melpignano, M. (2007). Endometrioid carcinoma of the ovary: A retrospective study of 138 cases. Pathology & Oncology Research, 13(4), 311-316.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Halimuzzaman, Md., Sharma, Dr. J., Bhattacharjee, T., Mallik, B., Rahman, R., Rezaul Karim, M., Masrur Ikram, M., & Fokhrul Islam, M. (2024). Blockchain technology for integrating electronic records of digital healthcare system. Journal of Angiotherapy, 8(7). http://publishing.emanresearch.org/Journal/Abstarct/angiotherapy.879740

Howard, J., & Gugger, S. (2020). Fastai: A layered API for deep learning.

Howard, J., & Gugger, S. (2020). Fastai: A layered API for deep learning.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Lu, M. Y., Chen, T. Y., Williamson, D. F., Zhao, M., Shady, M., Lipkowitz, S., ... & Mahmood, F. (2021). AI-based pathology predicts origins for cancers of unknown primary. Nature, 594(7861), 106-110.

Marchion, D. C., & Fishel, R. (2012). Mechanisms of homologous recombination deficiency in high-grade serous ovarian cancer. Cancer Research, 72(19), 4884-4889.

McCluggage, W. G. (2011). Morphological subtypes of ovarian carcinoma: A review with emphasis on new developments and pathogenesis. Pathology, 43(5), 420-432.

McCluggage, W. G. (2011). Morphological subtypes of ovarian carcinoma: A review with emphasis on new developments and pathogenesis. Pathology, 43(5), 420-432.

Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (pp. 618-626).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Torre, L. A., Trabert, B., DeSantis, C. E., Miller, K. D., Samimi, G., Runowicz, C. D., ... & Siegel, R. L. (2018). Ovarian cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68(4), 284-296.

Vaughan, S., Coward, J. I., Bast, R. C., Berchuck, A., Berek, J. S., Brenton, J. D., ... & Balkwill, F. R. (2011). Rethinking ovarian cancer: Recommendations for improving outcomes. Nature Reviews Cancer, 11(10), 719-725.

Vaughan, S., Coward, J. I., Bast, R. C., Berchuck, A., Berek, J. S., Brenton, J. D., ... & Balkwill, F. R. (2011). Rethinking ovarian cancer: Recommendations for improving outcomes. Nature Reviews Cancer, 11(10), 719-725.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
300
View
0
Share