Stromal Interaction Molecule-1 (STIM1): Orchestrating Calcium Signaling in Cancer and Hematologic Malignancies
Rabiatul Basria S. M. N. Mydin1, Adam Azlan1, Eman Salem Saeed Algariri,1 Nur Azuar Abdul Rahim2,3, Emmanuel Jairaj Moses1, Narazah Mohd Yusoff1
Journal of Angiotherapy 7(1) 1-5 https://doi.org/10.25163/angiotherapy.719353
Submitted: 28 September 2023 Revised: 08 November 2023 Published: 12 November 2023
Abstract
STIM-1 plays pivotal roles in carcinogenesis via calcium signalling. STIM-1 regulatory functions in malignancies were observed to be significantly implicated resulting in various oncogenic properties. STIM-1 induced oncogenic properties mainly via the store operated calcium entry (SOCE) disruption. Moreover, calcium signalling mediated via STIM-1 could also in synergy with reactive oxygen species (ROS) mediates oncogenic characteristics. This would often lead to induction of pro-survival mechanism in cancer. Understanding STIM-1 lanscape is therefore crucial in contributing to the knowledge on cancer alleviation. This review emphasized on the significance of STIM1 in various cancers including hematologic malignancies and its intricate influence over ROS and various cellular processes.
Keywords: Cancer, Disease, Stromal Interaction Molecule 1 (STIM1), Store-Operated Calcium Entry (SOCE), Calcium Signalling, Hematological Malignancies
References
Cabanas, H., Harnois, T., Magaud, C., Cousin, L., Constantin, B., Bourmeyster, N., & Déliot, N. (2018). Deregulation of calcium homeostasis in Bcr-Abl-dependent chronic myeloid leukemia. Oncotarget, 9(41), 26309–26327. https://doi.org/10.18632/oncotarget.25241
Cheng, H., Wang, S., & Feng, R. (2016). STIM1 plays an important role in TGF-β-induced suppression of breast cancer cell proliferation. Oncotarget, 7(13), 16866–16878. https://doi.org/10.18632/oncotarget.7619
Cheng, Y., Hao, Y., Zhang, A., Hu, C., Jiang, X., Wu, Q., & Xu, X. (2018). Persistent STAT5-mediated ROS production and involvement of aberrant p53 apoptotic signaling in the resistance of chronic myeloid leukemia to imatinib. International Journal of Molecular Medicine, 41(1), 455–463. https://doi.org/10.3892/ijmm.2017.3205
Cui, C., Merritt, R., Fu, L., & Pan, Z. (2017). Targeting calcium signaling in cancer therapy. Acta Pharmaceutica Sinica. B, 7(1), 3–17. https://doi.org/10.1016/j.apsb.2016.11.001
Dejos, C., Gkika, D., & Cantelmo, A. R. (2020). The Two-Way Relationship Between Calcium and Metabolism in Cancer. Frontiers in Cell and Developmental Biology, 8, 573747. https://doi.org/10.3389/fcell.2020.573747
Diez-Bello, R., Jardin, I., Salido, G. M., & Rosado, J. A. (2017). Orai1 and Orai2 mediate store-operated calcium entry that regulates HL60 cell migration and FAK phosphorylation. Biochimica Et Biophysica Acta. Molecular Cell Research, 1864(6), 1064–1070. https://doi.org/10.1016/j.bbamcr.2016.11.014
Feldman, B., Fedida-Metula, S., Nita, J., Sekler, I., & Fishman, D. (2010). Coupling of mitochondria to store-operated Ca(2+)-signaling sustains constitutive activation of protein kinase B/Akt and augments survival of malignant melanoma cells. Cell Calcium, 47(6), 525–537. https://doi.org/10.1016/j.ceca.2010.05.002
Feno, S., Butera, G., Vecellio Reane, D., Rizzuto, R., & Raffaello, A. (2019). Crosstalk between Calcium and ROS in Pathophysiological Conditions. Oxidative Medicine and Cellular Longevity, 2019, 9324018. https://doi.org/10.1155/2019/9324018
Ge, C., Zeng, B., Li, R., Li, Z., Fu, Q., Wang, W., Wang, Z., Dong, S., Lai, Z., Wang, Y., Xue, Y., Guo, J., Di, T., & Song, X. (2019). Knockdown of STIM1 expression inhibits non-small-cell lung cancer cell proliferation in vitro and in nude mouse xenografts. Bioengineered, 10(1), 425–436. https://doi.org/10.1080/21655979.2019.1669518
Görlach, A., Bertram, K., Hudecova, S., & Krizanova, O. (2015). Calcium and ROS: A mutual interplay. Redox Biology, 6, 260–271. https://doi.org/10.1016/j.redox.2015.08.010
Gross, S., Mallu, P., Joshi, H., Schultz, B., Go, C., & Soboloff, J. (2020). Ca2+ as a therapeutic target in cancer. Advances in Cancer Research, 148, 233–317. https://doi.org/10.1016/bs.acr.2020.05.003
Hempel, N., & Trebak, M. (2017). Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium, 63, 70–96. https://doi.org/10.1016/j.ceca.2017.01.007
Herbst, R. S., Morgensztern, D., & Boshoff, C. (2018). The biology and management of non-small cell lung cancer. Nature, 553(7689), 446–454.
Jardin, I., & Rosado, J. A. (2016). STIM and calcium channel complexes in cancer. Biochimica Et Biophysica Acta, 1863(6 Pt B), 1418–1426. https://doi.org/10.1016/j.bbamcr.2015.10.003
Kim, J.-H., Lkhagvadorj, S., Lee, M.-R., Hwang, K.-H., Chung, H. C., Jung, J. H., Cha, S.-K., & Eom, M. (2014). Orai1 and STIM1 are critical for cell migration and proliferation of clear cell renal cell carcinoma. Biochemical and Biophysical Research Communications, 448(1), 76–82. https://doi.org/10.1016/j.bbrc.2014.04.064
Kondratska, K., Kondratskyi, A., Yassine, M., Lemonnier, L., Lepage, G., Morabito, A., Skryma, R., & Prevarskaya, N. (2014). Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance of pancreatic adenocarcinoma. Biochimica Et Biophysica Acta, 1843(10), 2263–2269. https://doi.org/10.1016/j.bbamcr.2014.02.012
Latour, S., Mahouche, I., Cherrier, F., Merlio, J.-P., Poglio, S., & Bepoldin, L. B. (2017). Abstract 1881: STIM1 and Orai1 control non-Hodgkin lymphoma cells migration. Cancer Research, 77(13_Supplement), 1881. https://doi.org/10.1158/1538-7445.AM2017-1881
Li, G., Zhang, Z., Wang, R., Ma, W., Yang, Y., Wei, J., & Wei, Y. (2013). Suppression of STIM1 inhibits human glioblastoma cell proliferation and induces G0/G1 phase arrest. Journal of Experimental & Clinical Cancer Research?: CR, 32(1), 20. https://doi.org/10.1186/1756-9966-32-20
Li, W., Zhang, M., Xu, L., Lin, D., Cai, S., & Zou, F. (2013). The apoptosis of non-small cell lung cancer induced by cisplatin through modulation of STIM1. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 65(7–8), 1073–1081. https://doi.org/10.1016/j.etp.2013.04.003
Li, X., Fang, P., Mai, J., Choi, E. T., Wang, H., & Yang, X. (2013). Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. Journal of Hematology & Oncology, 6, 19. https://doi.org/10.1186/1756-8722-6-19
Liu, Y., Jin, M., Wang, Y., Zhu, J., Tan, R., Zhao, J., Ji, X., Jin, C., Jia, Y., Ren, T., & Xing, J. (2020). MCU-induced mitochondrial calcium uptake promotes mitochondrial biogenesis and colorectal cancer growth. Signal Transduction and Targeted Therapy, 5(1), 59. https://doi.org/10.1038/s41392-020-0155-5
Lunz, V., Romanin, C., & Frischauf, I. (2019). STIM1 activation of Orai1. Cell Calcium, 77, 29–38. https://doi.org/10.1016/j.ceca.2018.11.009
Muik, M., Schindl, R., Fahrner, M., & Romanin, C. (2012). Ca(2+) release-activated Ca(2+) (CRAC) current, structure, and function. Cellular and Molecular Life Sciences: CMLS, 69(24), 4163–4176. https://doi.org/10.1007/s00018-012-1072-8
Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., & Migliaccio, A. (2020). ROS in cancer therapy: The bright side of the moon. Experimental & Molecular Medicine, 52(2), 192–203. https://doi.org/10.1038/s12276-020-0384-2
Prakriya, M. (2020). Calcium and cell function. The Journal of Physiology, 598(9), 1647–1648. https://doi.org/10.1113/JP279541
Rosado, J. A., Diez, R., Smani, T., & Jardín, I. (2015). STIM and Orai1 Variants in Store-Operated Calcium Entry. Frontiers in Pharmacology, 6, 325. https://doi.org/10.3389/fphar.2015.00325
Saint Fleur-Lominy, S., Maus, M., Vaeth, M., Lange, I., Zee, I., Suh, D., Liu, C., Wu, X., Tikhonova, A., Aifantis, I., & Feske, S. (2018). STIM1 and STIM2 Mediate Cancer-Induced Inflammation in T Cell Acute Lymphoblastic Leukemia. Cell Reports, 24(11), 3045-3060.e5. https://doi.org/10.1016/j.celrep.2018.08.030
Singh, A. K., Roy, N. K., Bordoloi, D., Padmavathi, G., Banik, K., Khwairakpam, A. D., Kunnumakkara, A. B., & Sukumar, P. (2020). Orai-1 and Orai-2 regulate oral cancer cell migration and colonisation by suppressing Akt/mTOR/NF-κB signalling. Life Sciences, 261, 118372.
Takahashi, N., Chen, H.-Y., Harris, I. S., Stover, D. G., Selfors, L. M., Bronson, R. T., Deraedt, T., Cichowski, K., Welm, A. L., Mori, Y., Mills, G. B., & Brugge, J. S. (2018). Cancer Cells Co-opt the Neuronal Redox-Sensing Channel TRPA1 to Promote Oxidative-Stress Tolerance. Cancer Cell, 33(6), 985-1003.e7. https://doi.org/10.1016/j.ccell.2018.05.001
Tilly, H., Silva, M. G. da, Vitolo, U., Jack, A., Meignan, M., Lopez-Guillermo, A., Walewski, J., André, M., Johnson, P. W., Pfreundschuh, M., & Ladetto, M. (2015). Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Annals of Oncology, 26, v116–v125. https://doi.org/10.1093/annonc/mdv304
Umemura, M., Baljinnyam, E., Feske, S., De Lorenzo, M. S., Xie, L.-H., Feng, X., Oda, K., Makino, A., Fujita, T., Yokoyama, U., Iwatsubo, M., Chen, S., Goydos, J. S., Ishikawa, Y., & Iwatsubo, K. (2014). Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation and cell migration. PloS One, 9(2), e89292. https://doi.org/10.1371/journal.pone.0089292
Vashisht, A., Trebak, M., & Motiani, R. K. (2015). STIM and Orai proteins as novel targets for cancer therapy. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. American Journal of Physiology - Cell Physiology, 309(7), C457–C469. https://doi.org/10.1152/ajpcell.00064.2015
Wang, J., Zhang, C., Chen, K., Tang, H., Tang, J., Song, C., & Xie, X. (2015). ERβ1 inversely correlates with PTEN/PI3K/AKT pathway and predicts a favorable prognosis in triple-negative breast cancer. Breast Cancer Research and Treatment, 152(2), 255–269. https://doi.org/10.1007/s10549-015-3467-3
Wang, W., Ren, Y., Wang, L., Zhao, W., Dong, X., Pan, J., Gao, H., & Tian, Y. (2018). Orai1 and Stim1 Mediate the Majority of Store-Operated Calcium Entry in Multiple Myeloma and Have Strong Implications for Adverse Prognosis. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 48(6), 2273–2285. https://doi.org/10.1159/000492645
Yang, S., Zhang, J. J., & Huang, X.-Y. (2009). Orai1 and STIM1 Are Critical for Breast Tumor Cell Migration and Metastasis. Cancer Cell, 15(2), 124–134. https://doi.org/10.1016/j.ccr.2008.12.019
Zhao, H., Yan, G., Zheng, L., Zhou, Y., Sheng, H., Wu, L., Zhang, Q., Lei, J., Zhang, J., Xin, R., Jiang, L., Zhang, X., Chen, Y., Wang, J., Xu, Y., Li, D., & Li, Y. (2020). STIM1 is a metabolic checkpoint regulating the invasion and metastasis of hepatocellular carcinoma. Theranostics, 10(14), 6483–6499. https://doi.org/10.7150/thno.44025
View Dimensions
View Altmetric
Save
Citation
View
Share