Microbial Bioactives

Microbial Bioactives | Online ISSN 2209-2161
279
Citations
171.5k
Views
157
Articles
Your new experience awaits. Try the new design now and help us make it even better
Switch to the new experience
REVIEWS   (Open Access)

Hypervirulent Acinetobacter baumannii: A Systematic Review and Meta-Analysis of Virulence Mechanisms and Antimicrobial Resistance

Abstract 1. Introduction 2. Materials and Methods 3. Results 4. Discussion 5. Limitations 6. Conclusion References

Kai Song 1*, Shuquan Xin 1*, Benkang Xie 1*

+ Author Affiliations

Microbial Bioactives 9 (1) 1-8 https://doi.org/10.25163/microbbioacts.9110609

Submitted: 17 October 2025 Revised: 11 January 2026  Accepted: 19 January 2026  Published: 21 January 2026 


Abstract

The emergence of hypervirulent Acinetobacter baumannii (hvAB) represents a critical global health threat due to its unique combination of multidrug resistance (MDR) and enhanced virulence. These strains have transformed a traditionally opportunistic pathogen into a formidable agent of healthcare-associated infections, causing bloodstream infections, ventilator-associated pneumonia, and meningitis with mortality rates as high as 50–70%. The convergence of resistance and virulence in hvAB is facilitated by horizontal gene transfer, mobile genetic elements, and shared regulatory networks, including two-component systems such as PmrAB and BfmRS. Virulence factors, including capsule formation, biofilm development, iron acquisition via siderophores, and membrane permeability modifications, provide survival advantages against host immunity and antimicrobial therapy. This systematic review and meta-analysis synthesize data from in vitro, in vivo, and clinical studies to evaluate the prevalence of hvAB, mechanisms driving resistance and virulence, and the efficacy of emerging therapeutic strategies. Meta-analytic techniques were applied to quantify associations between specific virulence determinants and clinical outcomes. Furthermore, innovative non-antibiotic approaches, including therapeutic vaccines, phage therapy, anti-virulence compounds, and siderophore-based strategies, were assessed for their potential to mitigate infections. Findings underscore the urgent need for integrated surveillance, rapid diagnostics, and alternative therapeutics targeting both resistance and virulence pathways. By providing a comprehensive overview, this study aims to inform clinical management, guide research priorities, and support the development of novel interventions to combat this evolving pathogen.

Keywords: Acinetobacter baumannii; Hypervirulence; Multidrug resistance; Biofilm; Siderophores; Two-component systems; Antimicrobial strategies

References

Abuga, K. M., Muriuki, J. M., Williams, T. N., & Atkinson, S. H. (2020). How severe anaemia might influence the risk of invasive bacterial infections in African children. International Journal of Molecular Sciences, 21(18), 6976. https://doi.org/10.3390/ijms21186976

Antunes, L. C. S., Imperi, F., Minandri, F., & Visca, P. (2012). In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 56(11), 5961–5970. https://doi.org/10.1128/AAC.01519-12

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Wiley. https://doi.org/10.1002/9780470743386          

Bush, K., & Bradford, P. A. (2020). Epidemiology of β-lactamase-producing pathogens. Clinical Microbiology Reviews, 33(2). https://doi.org/10.1128/CMR.00047-19

Chahales, P., & Thanassi, D. G. (2015). Structure, function, and assembly of adhesive organelles by uropathogenic bacteria. Microbiology Spectrum, 3(3). https://doi.org/10.1128/microbiolspec.UTI-0018-2013

Chen, S. L., Hung, C. S., Pinkner, J. S., Walker, J. N., Cusumano, C. K., Li, Z., Bouckaert, J., Gordon, J. I., Hultgren, S. J., & Chen, S. L. (2009). Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proceedings of the National Academy of Sciences, 106(52), 22439–22444. https://doi.org/10.1073/pnas.0902179106

Cui, L., Ma, X., Sato, K., Okuma, K., Tenover, F., Mamizuka, E., Gemmell, C., Kim, M.-N., Ploy, M.-C., Solh, N., & Hiramatsu, K. (2003). Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. Journal of Clinical Microbiology, 41(1), 5–14. https://doi.org/10.1128/JCM.41.1.5-14.2003

Cui, Y., Guo, F., Guo, J., Cao, X., Wang, H., Yang, B., Zhou, H., Su, X., Zeng, X., Lin, J., & Xu, F. (2020). Immunization of chickens with the enterobactin conjugate vaccine reduced Campylobacter jejuni colonization in the intestine. Vaccines, 8(4), 747. https://doi.org/10.3390/vaccines8040747

Deng, J., Wang, X., Zhang, B.-Z., Gao, P., Lin, Q., Kao, R. Y.-T., Gustafsson, K., Yuen, K.-Y., & Huang, J.-D. (2019). Broad and effective protection against Staphylococcus aureus is elicited by a multivalent vaccine formulated with novel antigens. mSphere, 4(4). https://doi.org/10.1128/mSphere.00362-19

DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188. https://doi.org/10.1016/0197-2456(86)90046-2             

Di Mario, F., Aragona, G., Bo, N. D., Ingegnoli, A., Cavestro, G. M., Moussa, A. M., Iori, V., Leandro, G., Pilotto, A., & Franze, A. (2003). Use of lactoferrin for Helicobacter pylori eradication: Preliminary results. Journal of Clinical Gastroenterology, 36(5), 396–398. https://doi.org/10.1097/00004836-200305000-00006   

Di Mario, F., Aragona, G., Dal Bo, N., Cavallaro, L., Marcon, V., Olivieri, P., Benedetti, E., Orzes, N., Marin, R., Tafner, G., et al. (2006). Bovine lactoferrin for Helicobacter pylori eradication: An open, randomized, multicentre study. Alimentary Pharmacology & Therapeutics, 23(8), 1235–1240. https://doi.org/10.1111/j.1365-2036.2006.02851.x            

Ding, X., Duan, S., Ding, X., Liu, R., Xu, F.-J., Ding, X., Duan, S., Ding, X., Liu, R., & Xu, F.-J. (2018). Versatile antibacterial materials: An emerging arsenal for combatting bacterial pathogens. Advanced Functional Materials, 28(45), 1802140. https://doi.org/10.1002/adfm.201802140

Dryden, M. (2018). Reactive oxygen species: A novel antimicrobial. International Journal of Antimicrobial Agents, 51(3), 299–303. https://doi.org/10.1016/j.ijantimicag.2017.08.029

Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629

Eijkelkamp, B. A., Stroeher, U. H., Hassan, K. A., Elbourne, L. D. H., Paulsen, I. T., & Brown, M. H. (2013). H-NS plays a role in expression of Acinetobacter baumannii virulence features. Infection and Immunity, 81(7), 2574–2583. https://doi.org/10.1128/IAI.00065-13

Gal, Y., Marcus, H., Mamroud, E., & Aloni-Grinstein, R. (2023). Mind the gap—A perspective on strategies for protecting against bacterial infections during the period from infection to eradication. Microorganisms, 11(7), 1701. https://doi.org/10.3390/microorganisms11071701

Grygorcewicz, B., Wojciuk, B., Roszak, M., Lubowska, N., Blazejczak, P., Jursa-Kulesza, J., Rakoczy, R., Masiuk, H., & Dolegowska, B. (2021). Environmental phage-based cocktail and antibiotic combination effects on Acinetobacter baumannii biofilm in a human urine model. Microbial Drug Resistance, 27(1), 25–35. https://doi.org/10.1089/mdr.2020.0083.

Gu, H., Zeng, X., Peng, L., Xiang, C., Zhou, Y., Zhang, X., Zhang, J., Wang, N., Guo, G., Li, Y., & Ni, W. (2021). Vaccination induces rapid protection against bacterial pneumonia via training alveolar macrophage in mice. eLife, 10. https://doi.org/10.7554/eLife.69951.sa2

Haas, H., Eisendle, M., & Turgeon, B. G. (2008). Siderophores in fungal physiology and virulence. Annual Review of Phytopathology, 46, 149–187. https://doi.org/10.1146/annurev.phyto.45.062806.094338

Hantke, K. (1990). Dihydroxybenzolyserine—A siderophore for E. coli. FEMS Microbiology Letters, 67(1), 5–8. https://doi.org/10.1016/0378-1097(90)90158-M

Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2022). Cochrane handbook for systematic reviews of interventions (Version 6.3). Cochrane. http://www.training.cochrane.org/handbook           

Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560. https://doi.org/10.1136/bmj.327.7414.557     

Karasinski, M., Wnorowska, U., Daniluk, T., Deptula, P., Luckiewicz, M., Paprocka, P., Durnas, B., Sklodowski, K., Sawczuk, B., Savage, P. B., Piktel, E., & Bucki, R. (2024). Investigating the effectiveness of ceragenins against Acinetobacter baumannii to develop new antimicrobial and anti-adhesive strategies. International Journal of Molecular Sciences, 25(13), 7036. https://doi.org/10.3390/ijms25137036

Kaye, K. S., Shorr, A. F., Wunderink, R. G., Du, B., Poirier, G. E., Rana, K., Miller, A., Lewis, D., O'Donnell, J., Chen, L., & Durlobactam Development Group. (2023). Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). The Lancet Infectious Diseases, 23(9), 1072–1084. https://doi.org/10.1016/S1473-3099(23)00184-6

Keren, I., Wu, Y., Inocencio, J., Mulcahy, L. R., & Lewis, K. (2013). Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science, 339(6124), 1213–1216. https://doi.org/10.1126/science.1232688

Kerff, F. F., Terrak, M., & Charlier, P. (2008). The penicillin-binding proteins: Structure and role in peptidoglycan biosynthesis. FEMS Microbiology Reviews, 32(2), 234–258.
https://doi.org/10.1111/j.1574-6976.2008.00105.x

Khajanchi, B. K., Hasan, N. A., Choi, S. Y., Han, J., Zhao, S., Colwell, R. R., Cerniglia, C. E., & Foley, S. L. (2017). Comparative genomic analysis and characterization of incompatibility group FIB plasmid encoded virulence factors of Salmonella enterica isolated from food sources. BMC Genomics, 18(1). https://doi.org/10.1186/s12864-017-3954-5

Kröger, C., Kary, S. C., Schauer, K., & Cameron, A. D. S. (2017). Genetic regulation of virulence and antibiotic resistance in Acinetobacter baumannii. Genes, 8(1), 12.
https://doi.org/10.3390/genes8010012

Król, J. E., Wojtowicz, A. J., Rogers, L. M., Heuer, H., Smalla, K., Krone, S. M., & Top, E. M. (2013). Invasion of E. coli biofilms by antibiotic resistance plasmids. Plasmid, 70(1), 110–119.
https://doi.org/10.1016/j.plasmid.2013.03.003

Liu, Y., Mi, Z., Niu, W., An, X., Yuan, X., Liu, H., ... & Bai, C. (2016). Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro. Future Microbiology, 11(11), 1383-1393. https://doi.org/10.2217/fmb-2016-0104                      

Lusiak-Szelachowska, M., Miedzybrodzki, R., Drulis-Kawa, Z., Cater, K., Kneževic, P., Winogradow, C., Amaro, K., Jonczyk-Matysiak, E., Weber-Dabrowska, B., Rekas, J., & Górski, A. (2022). Bacteriophages and antibiotic interactions in clinical practice: What we have learned so far. Journal of Biomedical Science, 29(1). https://doi.org/10.1186/s12929-022-00806-1

Mahfouz, A. A., Said, H. S., Elfeky, S. M., & Shaaban, M. I. (2023). Inhibition of erythromycin and erythromycin-induced resistance among Staphylococcus aureus clinical isolates. Antibiotics, 12(3), 503.
https://doi.org/10.3390/antibiotics12030503

Martinez, J., Razo-Gutierrez, C., Le, C., Courville, R., Pimentel, C., Liu, C., ... & Vila, A. J. (2021). Cerebrospinal fluid (CSF) augments metabolism and virulence expression factors in Acinetobacter baumannii. Scientific Reports, 11(1), 4737. https://doi.org/10.1038/s41598-021-81714-6

Miethke, M., & Marahiel, M. A. (2007). Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews, 71(3), 413–451. https://doi.org/10.1128/MMBR.00012-07

Mlynarczyk-Bonikowska, B., Kowalewski, C., Krolak-Ulinska, A., & Marusza, W. (2022). Molecular mechanisms of drug resistance in Staphylococcus aureus. International Journal of Molecular Sciences, 23(14), 8088. https://doi.org/10.3390/ijms23158088

Mussi, M. A., Limansky, A. S., & Viale, A. M. (2005). Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: Natural insertional inactivation of a gene encoding a member of a novel family of β-barrel outer membrane proteins. Antimicrobial Agents and Chemotherapy, 49(4), 1432–1440. https://doi.org/10.1128/AAC.49.4.1432-1440.2005

Niu, C., Clemmer, K. M., Bonomo, R. A., & Rather, P. N. (2008). Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. Journal of Bacteriology, 190(9), 3386–3392.
https://doi.org/10.1128/JB.01929-07

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71                                  

Uskudar-Guclu, A., Danyildiz, S., Mirza, H. C., Akcil Ok, M., & Basustaoglu, A. (2024). In vitro activity of cefiderocol against carbapenem-resistant Acinetobacter baumannii carrying various β-lactamase encoding genes. European Journal of Clinical Microbiology & Infectious Diseases, 43(6), 1171-1179. https://doi.org/10.1007/s10096-024-04831-w

Vukotic, G., Obradovic, M., Novovic, K., Di Luca, M., Jovcic, B., Fira, D., Neve, H., Kojic, M., & McAuliffe, O. (2020). Characterization, antibiofilm, and depolymerizing activity of two phages active on carbapenem-resistant Acinetobacter baumannii. Frontiers in Medicine, 7, 426. https://doi.org/10.3389/fmed.2020.00426.        

Wintachai, P., Phaonakrop, N., Roytrakul, S., Naknaen, A., Pomwised, R., Voravuthikunchai, S. P., Surachat, K., & Smith, D. R. (2022). Enhanced antibacterial effect of a novel Friunavirus phage vWU2001 in combination with colistin against carbapenem-resistant Acinetobacter baumannii. Scientific Reports, 12, 2633. https://doi.org/10.1038/s41598-022-06582-0                                

Wu, N., Ma, X., & Ni, W. (2025). Hypervirulent Acinetobacter baumannii (hvAB): The convergence of virulence and multidrug resistance. Antibiotics, 14(6), 551.
https://doi.org/10.3390/antibiotics14060551

Yang, A. Q., Yang, H. Y., Guo, S. J., & Xie, Y. E. (2019). MF59 adjuvant enhances the immunogenicity and protective immunity of the OmpK/Omp22 fusion protein from Acineterbacter baumannii through intratracheal inoculation in mice. Scandinavian Journal of Immunology, 90(1), e12769.   https://doi.org/10.1111/sji.12769

Zou, J., Dong, J., & Yu, X. F. (2009). Meta-analysis: The effect of supplementation with lactoferrin on eradication rates and adverse events during Helicobacter pylori eradication therapy. Helicobacter, 14(2), 119–127. https://doi.org/10.1111/j.1523-5378.2009.00666.x

Zullo, A., De Francesco, V., Scaccianoce, G., Hassan, C., Panarese, A., Piglionica, D., Panella, C., Morini, S., & Ierardi, E. (2005). Quadruple therapy with lactoferrin for Helicobacter pylori eradication: A randomized, multicentre study. Digestive and Liver Disease, 37(7), 496–500. https://doi.org/10.1016/j.dld.2005.01.017


Article metrics
View details
0
Downloads
0
Citations
3
Views

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
3
View
0
Share