Microbial Bioactives
Microbial Bioactives | Online ISSN 2209-2161
279
Citations
171.5k
Views
157
Articles
REVIEWS (Open Access)
Hypervirulent Acinetobacter baumannii: A Systematic Review and Meta-Analysis of Virulence Mechanisms and Antimicrobial Resistance
Kai Song 1*, Shuquan Xin 1*, Benkang Xie 1*
Microbial Bioactives 9 (1) 1-8 https://doi.org/10.25163/microbbioacts.9110609
Submitted: 17 October 2025 Revised: 11 January 2026 Accepted: 19 January 2026 Published: 21 January 2026
Abstract
The emergence of hypervirulent Acinetobacter baumannii (hvAB) represents a critical global health threat due to its unique combination of multidrug resistance (MDR) and enhanced virulence. These strains have transformed a traditionally opportunistic pathogen into a formidable agent of healthcare-associated infections, causing bloodstream infections, ventilator-associated pneumonia, and meningitis with mortality rates as high as 50–70%. The convergence of resistance and virulence in hvAB is facilitated by horizontal gene transfer, mobile genetic elements, and shared regulatory networks, including two-component systems such as PmrAB and BfmRS. Virulence factors, including capsule formation, biofilm development, iron acquisition via siderophores, and membrane permeability modifications, provide survival advantages against host immunity and antimicrobial therapy. This systematic review and meta-analysis synthesize data from in vitro, in vivo, and clinical studies to evaluate the prevalence of hvAB, mechanisms driving resistance and virulence, and the efficacy of emerging therapeutic strategies. Meta-analytic techniques were applied to quantify associations between specific virulence determinants and clinical outcomes. Furthermore, innovative non-antibiotic approaches, including therapeutic vaccines, phage therapy, anti-virulence compounds, and siderophore-based strategies, were assessed for their potential to mitigate infections. Findings underscore the urgent need for integrated surveillance, rapid diagnostics, and alternative therapeutics targeting both resistance and virulence pathways. By providing a comprehensive overview, this study aims to inform clinical management, guide research priorities, and support the development of novel interventions to combat this evolving pathogen.
Keywords: Acinetobacter baumannii; Hypervirulence; Multidrug resistance; Biofilm; Siderophores; Two-component systems; Antimicrobial strategies
References
Abuga, K. M., Muriuki, J. M., Williams, T. N., & Atkinson, S. H. (2020). How severe anaemia might influence the risk of invasive bacterial infections in African children. International Journal of Molecular Sciences, 21(18), 6976. https://doi.org/10.3390/ijms21186976
Antunes, L. C. S., Imperi, F., Minandri, F., & Visca, P. (2012). In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 56(11), 5961–5970. https://doi.org/10.1128/AAC.01519-12
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Wiley. https://doi.org/10.1002/9780470743386
Bush, K., & Bradford, P. A. (2020). Epidemiology of β-lactamase-producing pathogens. Clinical Microbiology Reviews, 33(2). https://doi.org/10.1128/CMR.00047-19
Chahales, P., & Thanassi, D. G. (2015). Structure, function, and assembly of adhesive organelles by uropathogenic bacteria. Microbiology Spectrum, 3(3). https://doi.org/10.1128/microbiolspec.UTI-0018-2013
Chen, S. L., Hung, C. S., Pinkner, J. S., Walker, J. N., Cusumano, C. K., Li, Z., Bouckaert, J., Gordon, J. I., Hultgren, S. J., & Chen, S. L. (2009). Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proceedings of the National Academy of Sciences, 106(52), 22439–22444. https://doi.org/10.1073/pnas.0902179106
Cui, L., Ma, X., Sato, K., Okuma, K., Tenover, F., Mamizuka, E., Gemmell, C., Kim, M.-N., Ploy, M.-C., Solh, N., & Hiramatsu, K. (2003). Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. Journal of Clinical Microbiology, 41(1), 5–14. https://doi.org/10.1128/JCM.41.1.5-14.2003
Cui, Y., Guo, F., Guo, J., Cao, X., Wang, H., Yang, B., Zhou, H., Su, X., Zeng, X., Lin, J., & Xu, F. (2020). Immunization of chickens with the enterobactin conjugate vaccine reduced Campylobacter jejuni colonization in the intestine. Vaccines, 8(4), 747. https://doi.org/10.3390/vaccines8040747
Deng, J., Wang, X., Zhang, B.-Z., Gao, P., Lin, Q., Kao, R. Y.-T., Gustafsson, K., Yuen, K.-Y., & Huang, J.-D. (2019). Broad and effective protection against Staphylococcus aureus is elicited by a multivalent vaccine formulated with novel antigens. mSphere, 4(4). https://doi.org/10.1128/mSphere.00362-19
DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188. https://doi.org/10.1016/0197-2456(86)90046-2
Di Mario, F., Aragona, G., Bo, N. D., Ingegnoli, A., Cavestro, G. M., Moussa, A. M., Iori, V., Leandro, G., Pilotto, A., & Franze, A. (2003). Use of lactoferrin for Helicobacter pylori eradication: Preliminary results. Journal of Clinical Gastroenterology, 36(5), 396–398. https://doi.org/10.1097/00004836-200305000-00006
Di Mario, F., Aragona, G., Dal Bo, N., Cavallaro, L., Marcon, V., Olivieri, P., Benedetti, E., Orzes, N., Marin, R., Tafner, G., et al. (2006). Bovine lactoferrin for Helicobacter pylori eradication: An open, randomized, multicentre study. Alimentary Pharmacology & Therapeutics, 23(8), 1235–1240. https://doi.org/10.1111/j.1365-2036.2006.02851.x
Ding, X., Duan, S., Ding, X., Liu, R., Xu, F.-J., Ding, X., Duan, S., Ding, X., Liu, R., & Xu, F.-J. (2018). Versatile antibacterial materials: An emerging arsenal for combatting bacterial pathogens. Advanced Functional Materials, 28(45), 1802140. https://doi.org/10.1002/adfm.201802140
Dryden, M. (2018). Reactive oxygen species: A novel antimicrobial. International Journal of Antimicrobial Agents, 51(3), 299–303. https://doi.org/10.1016/j.ijantimicag.2017.08.029
Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629
Eijkelkamp, B. A., Stroeher, U. H., Hassan, K. A., Elbourne, L. D. H., Paulsen, I. T., & Brown, M. H. (2013). H-NS plays a role in expression of Acinetobacter baumannii virulence features. Infection and Immunity, 81(7), 2574–2583. https://doi.org/10.1128/IAI.00065-13
Gal, Y., Marcus, H., Mamroud, E., & Aloni-Grinstein, R. (2023). Mind the gap—A perspective on strategies for protecting against bacterial infections during the period from infection to eradication. Microorganisms, 11(7), 1701. https://doi.org/10.3390/microorganisms11071701
Grygorcewicz, B., Wojciuk, B., Roszak, M., Lubowska, N., Blazejczak, P., Jursa-Kulesza, J., Rakoczy, R., Masiuk, H., & Dolegowska, B. (2021). Environmental phage-based cocktail and antibiotic combination effects on Acinetobacter baumannii biofilm in a human urine model. Microbial Drug Resistance, 27(1), 25–35. https://doi.org/10.1089/mdr.2020.0083.
Gu, H., Zeng, X., Peng, L., Xiang, C., Zhou, Y., Zhang, X., Zhang, J., Wang, N., Guo, G., Li, Y., & Ni, W. (2021). Vaccination induces rapid protection against bacterial pneumonia via training alveolar macrophage in mice. eLife, 10. https://doi.org/10.7554/eLife.69951.sa2
Haas, H., Eisendle, M., & Turgeon, B. G. (2008). Siderophores in fungal physiology and virulence. Annual Review of Phytopathology, 46, 149–187. https://doi.org/10.1146/annurev.phyto.45.062806.094338
Hantke, K. (1990). Dihydroxybenzolyserine—A siderophore for E. coli. FEMS Microbiology Letters, 67(1), 5–8. https://doi.org/10.1016/0378-1097(90)90158-M
Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2022). Cochrane handbook for systematic reviews of interventions (Version 6.3). Cochrane. http://www.training.cochrane.org/handbook
Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557–560. https://doi.org/10.1136/bmj.327.7414.557
Karasinski, M., Wnorowska, U., Daniluk, T., Deptula, P., Luckiewicz, M., Paprocka, P., Durnas, B., Sklodowski, K., Sawczuk, B., Savage, P. B., Piktel, E., & Bucki, R. (2024). Investigating the effectiveness of ceragenins against Acinetobacter baumannii to develop new antimicrobial and anti-adhesive strategies. International Journal of Molecular Sciences, 25(13), 7036. https://doi.org/10.3390/ijms25137036
Kaye, K. S., Shorr, A. F., Wunderink, R. G., Du, B., Poirier, G. E., Rana, K., Miller, A., Lewis, D., O'Donnell, J., Chen, L., & Durlobactam Development Group. (2023). Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). The Lancet Infectious Diseases, 23(9), 1072–1084. https://doi.org/10.1016/S1473-3099(23)00184-6
Keren, I., Wu, Y., Inocencio, J., Mulcahy, L. R., & Lewis, K. (2013). Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science, 339(6124), 1213–1216. https://doi.org/10.1126/science.1232688
Kerff, F. F., Terrak, M., & Charlier, P. (2008). The penicillin-binding proteins: Structure and role in peptidoglycan biosynthesis. FEMS Microbiology Reviews, 32(2), 234–258.
https://doi.org/10.1111/j.1574-6976.2008.00105.x
Khajanchi, B. K., Hasan, N. A., Choi, S. Y., Han, J., Zhao, S., Colwell, R. R., Cerniglia, C. E., & Foley, S. L. (2017). Comparative genomic analysis and characterization of incompatibility group FIB plasmid encoded virulence factors of Salmonella enterica isolated from food sources. BMC Genomics, 18(1). https://doi.org/10.1186/s12864-017-3954-5
Kröger, C., Kary, S. C., Schauer, K., & Cameron, A. D. S. (2017). Genetic regulation of virulence and antibiotic resistance in Acinetobacter baumannii. Genes, 8(1), 12.
https://doi.org/10.3390/genes8010012
Król, J. E., Wojtowicz, A. J., Rogers, L. M., Heuer, H., Smalla, K., Krone, S. M., & Top, E. M. (2013). Invasion of E. coli biofilms by antibiotic resistance plasmids. Plasmid, 70(1), 110–119.
https://doi.org/10.1016/j.plasmid.2013.03.003
Liu, Y., Mi, Z., Niu, W., An, X., Yuan, X., Liu, H., ... & Bai, C. (2016). Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro. Future Microbiology, 11(11), 1383-1393. https://doi.org/10.2217/fmb-2016-0104
Lusiak-Szelachowska, M., Miedzybrodzki, R., Drulis-Kawa, Z., Cater, K., Kneževic, P., Winogradow, C., Amaro, K., Jonczyk-Matysiak, E., Weber-Dabrowska, B., Rekas, J., & Górski, A. (2022). Bacteriophages and antibiotic interactions in clinical practice: What we have learned so far. Journal of Biomedical Science, 29(1). https://doi.org/10.1186/s12929-022-00806-1
Mahfouz, A. A., Said, H. S., Elfeky, S. M., & Shaaban, M. I. (2023). Inhibition of erythromycin and erythromycin-induced resistance among Staphylococcus aureus clinical isolates. Antibiotics, 12(3), 503.
https://doi.org/10.3390/antibiotics12030503
Martinez, J., Razo-Gutierrez, C., Le, C., Courville, R., Pimentel, C., Liu, C., ... & Vila, A. J. (2021). Cerebrospinal fluid (CSF) augments metabolism and virulence expression factors in Acinetobacter baumannii. Scientific Reports, 11(1), 4737. https://doi.org/10.1038/s41598-021-81714-6
Miethke, M., & Marahiel, M. A. (2007). Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews, 71(3), 413–451. https://doi.org/10.1128/MMBR.00012-07
Mlynarczyk-Bonikowska, B., Kowalewski, C., Krolak-Ulinska, A., & Marusza, W. (2022). Molecular mechanisms of drug resistance in Staphylococcus aureus. International Journal of Molecular Sciences, 23(14), 8088. https://doi.org/10.3390/ijms23158088
Mussi, M. A., Limansky, A. S., & Viale, A. M. (2005). Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: Natural insertional inactivation of a gene encoding a member of a novel family of β-barrel outer membrane proteins. Antimicrobial Agents and Chemotherapy, 49(4), 1432–1440. https://doi.org/10.1128/AAC.49.4.1432-1440.2005
Niu, C., Clemmer, K. M., Bonomo, R. A., & Rather, P. N. (2008). Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii. Journal of Bacteriology, 190(9), 3386–3392.
https://doi.org/10.1128/JB.01929-07
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Uskudar-Guclu, A., Danyildiz, S., Mirza, H. C., Akcil Ok, M., & Basustaoglu, A. (2024). In vitro activity of cefiderocol against carbapenem-resistant Acinetobacter baumannii carrying various β-lactamase encoding genes. European Journal of Clinical Microbiology & Infectious Diseases, 43(6), 1171-1179. https://doi.org/10.1007/s10096-024-04831-w
Vukotic, G., Obradovic, M., Novovic, K., Di Luca, M., Jovcic, B., Fira, D., Neve, H., Kojic, M., & McAuliffe, O. (2020). Characterization, antibiofilm, and depolymerizing activity of two phages active on carbapenem-resistant Acinetobacter baumannii. Frontiers in Medicine, 7, 426. https://doi.org/10.3389/fmed.2020.00426.
Wintachai, P., Phaonakrop, N., Roytrakul, S., Naknaen, A., Pomwised, R., Voravuthikunchai, S. P., Surachat, K., & Smith, D. R. (2022). Enhanced antibacterial effect of a novel Friunavirus phage vWU2001 in combination with colistin against carbapenem-resistant Acinetobacter baumannii. Scientific Reports, 12, 2633. https://doi.org/10.1038/s41598-022-06582-0
Wu, N., Ma, X., & Ni, W. (2025). Hypervirulent Acinetobacter baumannii (hvAB): The convergence of virulence and multidrug resistance. Antibiotics, 14(6), 551.
https://doi.org/10.3390/antibiotics14060551
Yang, A. Q., Yang, H. Y., Guo, S. J., & Xie, Y. E. (2019). MF59 adjuvant enhances the immunogenicity and protective immunity of the OmpK/Omp22 fusion protein from Acineterbacter baumannii through intratracheal inoculation in mice. Scandinavian Journal of Immunology, 90(1), e12769. https://doi.org/10.1111/sji.12769
Zou, J., Dong, J., & Yu, X. F. (2009). Meta-analysis: The effect of supplementation with lactoferrin on eradication rates and adverse events during Helicobacter pylori eradication therapy. Helicobacter, 14(2), 119–127. https://doi.org/10.1111/j.1523-5378.2009.00666.x
Zullo, A., De Francesco, V., Scaccianoce, G., Hassan, C., Panarese, A., Piglionica, D., Panella, C., Morini, S., & Ierardi, E. (2005). Quadruple therapy with lactoferrin for Helicobacter pylori eradication: A randomized, multicentre study. Digestive and Liver Disease, 37(7), 496–500. https://doi.org/10.1016/j.dld.2005.01.017
Recommended articles
Breaking the Biofilm Barrier: Natural Products, Advanced Therapies, and Emerging Strategies Against Streptococcus mutans–Candida Polymicrobial Oral Biofilms
Microbial Evolution in Microgravity or Space: Understanding Microbial Adaptation and Survival in Space Environments — A Systematic Review
Understanding Antibiotic Resistance in Escherichia coli: Implications for Infection Management in Cancer Patients
Article metrics
View details
0
Downloads
0
Citations
3
Views
0
Save
Save
0
Citation
Citation
3
View
View
0
Share
Share