Microbial Bioactives
Microbial Bioactives | Online ISSN 2209-2161
279
Citations
169.9k
Views
157
Articles
REVIEWS (Open Access)
Breaking the Biofilm Barrier: Natural Products, Advanced Therapies, and Emerging Strategies Against Streptococcus mutans–Candida Polymicrobial Oral Biofilms
Zubaida Ihsan Thamir 1, Hind Salah Hasan 2*
Microbial Bioactives 9 (1) 1-8 https://doi.org/10.25163/microbbioacts.9110606
Submitted: 13 October 2025 Revised: 01 January 2026 Accepted: 07 January 2026 Published: 08 January 2026
Abstract
The global escalation of antimicrobial resistance (AMR) has significantly undermined the effectiveness of conventional antimicrobial therapies, necessitating urgent exploration of alternative treatment strategies. Oral biofilm–associated infections, particularly those driven by polymicrobial consortia of Streptococcus mutans and Candida species, represent a major clinical challenge due to their heightened virulence, metabolic cooperation, and intrinsic resistance to antimicrobial agents. These cross-kingdom biofilms are central to the pathogenesis of dental caries and periodontal disease, conditions that collectively affect billions of individuals worldwide and impose substantial economic and quality-of-life burdens. This systematic review and meta-analytical synthesis evaluates current evidence on novel therapeutic approaches targeting S. mutans–Candida oral biofilms, with a specific focus on natural products, antimicrobial peptides, nanotechnology-based delivery systems, quorum sensing inhibitors, and antimicrobial photodynamic therapy. Emphasis is placed on bioactive compounds derived from underexplored ecological niches, including marine, halophilic, and Antarctic microorganisms, which have demonstrated potent antibiofilm and antimicrobial activities in preclinical models. Using structured literature selection criteria, studies reporting quantitative efficacy metrics such as minimum inhibitory concentration (MIC), minimum biofilm inhibitory concentration (MBIC), and IC50 values were analyzed to compare effect sizes across compound classes. The findings highlight that strategies disrupting extracellular polymeric substance (EPS) matrices, metabolic cooperation, and signaling pathways are consistently more effective than conventional monotherapies. Collectively, this review underscores the therapeutic potential of integrating natural product discovery with advanced biofilm-targeted technologies. It further identifies critical gaps in translational research, emphasizing the need for standardized in vivo models and clinical validation to advance promising antibiofilm agents toward clinical application.
Keywords: Antimicrobial resistance; oral biofilms; Streptococcus mutans; Candida albicans; natural products; antimicrobial peptides; nanotechnology; photodynamic therapy; quorum sensing inhibition
References
Alaoui Mdarhri, H., Benmessaoud, R., Yacoubi, H., Seffar, L., Guennouni Assimi, H., Hamam, M., Boussettine, R., Filali Ansari, N., Lahlou, F. A., Diawara, I., Ennaji, M. M., & Kettani Halabi, M. (2022). Alternatives therapeutic approaches to conventional antibiotics: Advantages, limitations and potential application in medicine. Antibiotics, 11(12), 1826. https://doi.org/10.3390/antibiotics11121826
Anju, V. T., Busi, S., Imchen, M., Kumavath, R., Mohan, M. S., Salim, S. A., Subhaswaraj, P., & Dyavaiah, M. (2022). Polymicrobial infections and biofilms: Clinical significance and eradication strategies. Antibiotics, 11(12), 1731. https://doi.org/10.3390/antibiotics11121731
Aristoff, P. A., Garcia, G. A., Kirchhoff, P. D., & Showalter, H. D. (2010). Rifamycins—Obstacles and opportunities. Tuberculosis, 90(2), 94–118. https://doi.org/10.1016/j.tube.2010.02.001
Asencio, G., Lavin, P., Alegría, K., Domínguez, M., Bello, H., González Rocha, G., & González Aravena, M. (2014). Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi resistant Gramnegative bacteria. Electronic Journal of Biotechnology, 17(1), 1-5. https://doi.org/10.1016/j.ejbt.2013.12.001
Barth, S. A., Preussger, D., Pietschmann, J., Feßler, A. T., Heller, M., Herbst, W., Schnee, C., Schwarz, S., Kloss, F., Berens, C., & Menge, C. (2024). In vitro antibacterial activity of microbial natural products against bacterial pathogens of veterinary and zoonotic relevance. Antibiotics, 13(2), 135. https://doi.org/10.3390/antibiotics13020135
Bernal, F. A., Hammann, P., & Kloss, F. (2022). Natural products in antibiotic development: Is the success story over? Current Opinion in Biotechnology, 78, 102783. https://doi.org/10.1016/j.copbio.2022.102783
Bosi, E., Fondi, M., Orlandini, V., Perrin, E., Maida, I., de Pascale, D., Tutino, M. L., Parrilli, E., Lo Giudice, A., Filloux, A., et al. (2017). The pangenome of (Antarctic) Pseudoalteromonas bacteria: Evolutionary and functional insights. BMC Genomics, 18. https://doi.org/10.1186/s12864-016-3382-y
Bourgeois, D., David, A., Inquimbert, C., Tramini, P., Molinari, N., & Carrouel, F. (2017). Quantification of carious pathogens in the interdental microbiota of young caries free adults. PLoS ONE, 12, e0185804. https://doi.org/10.1371/journal.pone.0185804
Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., & Ramakrishnan, V. (2000). The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell, 103(7), 1143–1154. https://doi.org/10.1016/S0092-8674(00)00216-6
Carvalho, M. T. B., Araújo-Filho, H. G., Barreto, A. S., Quintans-Júnior, L. J., Quintans, J. S. S., & Barreto, R. S. S. (2021). Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. Phytomedicine, 90, 153636. https://doi.org/10.1016/j.phymed.2021.153636
Chevalier, M., Ranque, S., & Prêcheur, I. (2017). Oral fungal bacterial biofilm models in vitro: A review. Medical Mycology, 56, 653-667. https://doi.org/10.1093/mmy/myx111
Chiriac, A. I., Kloss, F., Kramer, J., Vuong, C., Hertweck, C., & Sahl, H. G. (2015). Mode of action of closthioamide: The first member of the polythioamide class of bacterial DNA gyrase inhibitors. Journal of Antimicrobial Chemotherapy, 70(9), 2576–2588. https://doi.org/10.1093/jac/dkv161
Conrado, R., Gomes, T. C., Roque, G. S. C., & De Souza, A. O. (2022). Overview of bioactive fungal secondary metabolites: cytotoxic and antimicrobial compounds. Antibiotics, 11(11), 1604. https://doi.org/10.3390/antibiotics11111604
Corral, P., Amoozegar, M. A., & Ventosa, A. (2019). Halophiles and their biomolecules: Recent advances and future applications in biomedicine. Marine Drugs, 18(1), 33. https://doi.org/10.3390/md18010033
De Almeida, J., Pimenta, A. L., Pereira, U. A., Barbosa, L. C. A., Hoogenkamp, M. A., van der Waal, S. V., Crielaard, W., & Felippe, W. T. (2018). Effects of three gamma alkylidene gamma lactams on the formation of multispecies biofilms. European Journal of Oral Sciences, 126, 214-221. https://doi.org/10.1111/eos.12411
De Simeis, D., & Serra, S. (2021). Actinomycetes: A never ending source of bioactive compounds-An overview on antibiotics production. Antibiotics, 10(5), 483. https://doi.org/10.3390/antibiotics10050483
Duque, C., Aida, K. L., Pereira, J. A., Teixeira, G. S., Caldo Teixeira, A. S., Perrone, L. R., Caiaffa, K. S., & de Cássia Negrini, T., et al. (2017). In vitro and in vivo evaluations of glass ionomer cement containing chlorhexidine for atraumatic restorative treatment. Journal of Applied Oral Science, 25, 541-550. https://doi.org/10.1590/1678-7757-2016-0195
Falsetta, M. L., Klein, M. I., Colonne, P. M., Scott Anne, K., Gregoire, S., Pai, C. H. H., Gonzalez Begne, M., Watson, G., Krysan, D. J., Bowen, W. H., et al. (2014). Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infection and Immunity, 82, 1968-1981. https://doi.org/10.1128/IAI.00087-14
Feldman, M., Shenderovich, J., Lavy, E., Friedman, M., & Steinberg, D. (2017). Sustained release membrane of thiazolidinedione 8: Effect on formation of a Candida/bacteria mixed biofilm on hydroxyapatite in a continuous flow model. BioMed Research International, 2017, 1-9. https://doi.org/10.1155/2017/3510124
Floss, H. G., & Yu, T. W. (2005). Rifamycin mode of action, resistance, and biosynthesis. Chemical Reviews, 105(2), 621–632. https://doi.org/10.1021/cr030112j
Forssten, S. D., Björklund, M., & Ouwehand, A. C. (2010). Streptococcus mutans, caries and simulation models. Nutrients, 2, 290-298. https://doi.org/10.3390/nu2030290
Fumes, A. C., da Silva Telles, P. D., Corona, S. A. M., & Borsatto, M. C. (2018). Effect of aPDT on Streptococcus mutans and Candida albicans present in the dental biofilm: Systematic review. Photodiagnosis and Photodynamic Therapy, 21, 363-366. https://doi.org/10.1016/j.pdpdt.2018.01.013
He, J., Kim, D., Zhou, X., Ahn, S. J., Burne, R. A., Richards, V. P., & Koo, H. (2017). RNA Seq reveals enhanced sugar metabolism in Streptococcus mutans co cultured with Candida albicans within mixed species biofilms. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01036
Hughes, D., & Andersson, D. I. (2017). Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiology Reviews, 41(4), 374-391. https://doi.org/10.1093/femsre/fux004
Hwang, G., Liu, Y., Kim, D., Li, Y., Krysan, D. J., & Koo, H. (2017). Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross kingdom biofilm development in vivo. PLOS Pathogens, 13, e1006407. https://doi.org/10.1371/journal.ppat.1006407
Kim, D., Liu, Y., Benhamou, R. I., Sanchez, H., Simón Soro, Á., Li, Y., Hwang, G., Fridman, M., Andes, D. R., & Koo, H. (2018). Bacterial derived exopolysaccharides enhance antifungal drug tolerance in a cross kingdom oral biofilm. ISME Journal, 12, 1427-1442. https://doi.org/10.1038/s41396-018-0113-1
Koo, H., & Bowen, W. H. (2014). Candida albicans and Streptococcus mutans: A potential synergistic alliance to cause virulent tooth decay in children. Future Microbiology, 9, 1295. https://doi.org/10.2217/fmb.14.92
Krzysciak, W., Koscielniak, D., Papiez, M., Vyhouskaya, P., Zagórska Swiezy, K., Kolodziej, I., Bystrowska, B., & Jurczak, A. (2017). Effect of a Lactobacillus salivarius probiotic on a double species Streptococcus mutans and Candida albicans caries biofilm. Nutrients, 9, 1242. https://doi.org/10.3390/nu9111242
Lincke, T., Behnken, S., Ishida, K., Roth, M., & Hertweck, C. (2010). Closthioamide: An unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angewandte Chemie International Edition, 49(11), 2011–2013. https://doi.org/10.1002/anie.200906114
Listl, S., Galloway, J., Mossey, P. A., & Marcenes, W. (2015). Global economic impact of dental diseases. Journal of Dental Research, 94, 1355-1361. https://doi.org/10.1177/0022034515602879
Loesche, W. J. (1986). Role of Streptococcus mutans in human dental decay. Microbiological Reviews, 50, 353-380. https://doi.org/10.1128/mr.50.4.353-380.1986
Macedo, P. D., Corbi, S. T., de Oliveira, G. J. P. L., Perussi, J. R., Ribeiro, A. O., & Marcantonio, R. A. C. (2019). Hypericin glucamine antimicrobial photodynamic therapy in the progression of experimentally induced periodontal disease in rats. Photodiagnosis and Photodynamic Therapy, 25, 43-49 https://doi.org/10.1016/j.pdpdt.2018.11.003
Manam, R. R., Teisan, S., White, D. J., Nicholson, B., Grodberg, J., Neuteboom, S. T. C., Lam, K. S., Mosca, D. A., Lloyd, G. K., & Potts, B. C. M. (2005). Lajollamycin, a nitro-tetraene spiro-β-lactone-γ-lactam antibiotic from the marine actinomycete Streptomyces nodosus. Journal of Natural Products, 68(2), 240–243. https://doi.org/10.1021/np049725x
Mangamuri, U. K., Vijayalakshmi, M., Poda, S., Manavathi, B., Chitturi, B., & Yenamandra, V. (2016). Isolation and biological evaluation of N-(4-aminocyclooctyl)-3,5-dinitrobenzamide, a new semisynthetic derivative from the mangrove-associated actinomycete Pseudonocardia endophytica VUK-10. 3 Biotech, 6(2), 158. https://doi.org/10.1007/s13205-016-0472-0
Mansson, M., Nielsen, R. K., Kjærulff, S., Gotfredsen, C. H., Wietz, M., Ingmer, H., Gram, L., & Larsen, T. O. (2011). Solonamides A and B from Photobacterium halotolerans interfere with quorum sensing in Staphylococcus aureus. Marine Drugs, 9(8), 1446–1456. https://doi.org/10.3390/md9122537
McArthur, K. A., Mitchell, S. S., Tsueng, G., Rheingold, A., White, D. J., Grodberg, J., Lam, K. S., & Potts, B. C. M. (2008). Lynamicins A−E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. Journal of Natural Products, 71(10), 1732–1737. https://doi.org/10.1021/np800286d
Mendes Gouvêa, C. C., do Amaral, J. G., Fernandes, R. A., Fernandes, G. L., Gorup, L. F., Camargo, E. R., Delbem, A. C. B., & Barbosa, D. B. (2018). Sodium trimetaphosphate and hexametaphosphate impregnated with silver nanoparticles: Characteristics and antimicrobial efficacy. Biofouling, 34, 299-308. https://doi.org/10.1080/08927014.2018.1437146
Mitropoulou, G., Stavropoulou, E., Vaou, N., Tsakris, Z., Voidarou, C., Tsiotsias, A., Tsigalou, C., Taban, B. M., Kourkoutas, Y., & Bezirtzoglou, E. (2023). Insights into antimicrobial and anti-inflammatory applications of plant bioactive compounds. Microorganisms, 11(5), 1156. https://doi.org/10.3390/microorganisms11051156
Nelson, M. L., & Levy, S. B. (2011). The history of the tetracyclines. Annals of the New York Academy of Sciences, 1241(1), 17–32. https://doi.org/10.1111/j.1749-6632.2011.06354.x
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41
Pereira, D. F. A., Seneviratne, C. J., Koga Ito, C. Y., & Samaranayake, L. P. (2017). Is the oral fungal pathogen Candida albicans a cariogen? Oral Diseases, 24, 518-526. https://doi.org/10.1111/odi.12691
Pihlstrom, B. L., Michalowicz, B. S., & Johnson, N. W. (2005). Periodontal diseases. Lancet, 366, 1809-1820. https://doi.org/10.1016/S0140-6736(05)67728-8
Pires, J. G., Zabini, S. S., Braga, A. S., de Cássia Fabris, R., de Andrade, F. B., de Oliveira, R. C., & Magalhães, A. C. (2018). Hydroalcoholic extracts of Myracrodruon urundeuva All. and Qualea grandiflora Mart. leaves on Streptococcus mutans biofilm and tooth demineralization. Archives of Oral Biology, 91, 17-22. https://doi.org/10.1016/j.archoralbio.2018.04.005
Rahmani Badi, A., Sepehr, S., & Babaie Naiej, H. (2015). A combination of cis 2 decenoic acid and chlorhexidine removes dental plaque. Archives of Oral Biology, 60, 1655-1661. https://doi.org/10.1016/j.archoralbio.2015.08.006
Robertsen, H. L., & Musiol-Kroll, E. M. (2019). Actinomycete-derived polyketides as a source of antibiotics and lead structures for the development of new antimicrobial drugs. Antibiotics, 8(4), 157. https://doi.org/10.3390/antibiotics8040157
Rodrigues, C. F., Boas, D., Haynes, K., & Henriques, M. (2018). The MNN2 gene knockout modulates the antifungal resistance of biofilms of Candida glabrata. Biomolecules, 8, 130. https://doi.org/10.3390/biom8040130
Salehi, B., Kregiel, D., Mahady, G., Sharifi Rad, J., Martins, N., & Rodrigues, C. F. (2020). Management of Streptococcus mutans-Candida spp. oral biofilms' infections: Paving the way for effective clinical interventions. Journal of Clinical Medicine, 9(2), 517. https://doi.org/10.3390/jcm9020517
Shang, D., Liang, H., Wei, S., Yan, X., & Yang, Q., Sun, Y. (2014). Effects of antimicrobial peptide L K6, a temporin 1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti inflammatory activity. Applied Microbiology and Biotechnology, 98, 8685-8695. https://doi.org/10.1007/s00253-014-5927-9
Simon, G., Bérubé, C., Voyer, N., & Grenier, D. (2019). Anti biofilm and anti adherence properties of novel cyclic dipeptides against oral pathogens. Bioorganic & Medicinal Chemistry, 27, 2223-2231 https://doi.org/10.1016/j.bmc.2018.11.042
Soria Lozano, P., Gilaberte, Y., Paz Cristóbal, M. P., Pérez Artiaga, L., Lampaya Pérez, V., Aporta, J., Pérez Laguna, V., García Luque, I., Revillo, M. J., & Rezusta, A. (2015). In vitro effect photodynamic therapy with different photosensitizers on cariogenic microorganisms. BMC Microbiology, 15. https://doi.org/10.1186/s12866-015-0524-3
Souza, J. A. S., Barbosa, D. B., Berretta, A. A., do Amaral, J. G., Gorup, L. F., de Souza Neto, F. N., Fernandes, R. A., & Fernandes, G. L., et al. (2018). Green synthesis of silver nanoparticles combined to calcium glycerophosphate: Antimicrobial and antibiofilm activities. Future Microbiology, 13, 345-357. https://doi.org/10.2217/fmb-2017-0173
Swanson, R. N., Hardy, D. J., Shipkowitz, N. L., Hanson, C. W., Ramer, N. C., Fernandes, P. B., & Clement, J. J. (1991). In vitro and in vivo evaluation of tiacumicins B and C against Clostridium difficile. Antimicrobial Agents and Chemotherapy, 35(6), 1108–1111. https://doi.org/10.1128/AAC.35.6.1108
Takenaka, S., Ohsumi, T., & Noiri, Y. (2019). Evidence based strategy for dental biofilms: Current evidence of mouthwashes on dental biofilm and gingivitis. Japanese Dental Science Review, 55, 33-40. https://doi.org/10.1016/j.jdsr.2018.07.001
Tan, Y., Leonhard, M., Moser, D., Ma, S., & Schneider Stickler, B. (2018). Inhibitory effect of probiotic lactobacilli supernatants on single and mixed non albicans Candida species biofilm. Archives of Oral Biology, 85, 40-45. https://doi.org/10.1016/j.archoralbio.2017.10.002
Trigo Gutierrez, J. K., Sanitá, P. V., Tedesco, A. C., Pavarina, A. C., & de Oliveira Mima, E. G. (2018). Effect of chloroaluminium phthalocyanine in cationic nanoemulsion on photoinactivation of multispecies biofilm. Photodiagnosis and Photodynamic Therapy, 24, 212-218. https://doi.org/10.1016/j.pdpdt.2018.10.005
Yang, C., Scoffield, J., Wu, R., Deivanayagam, C., Zou, J., & Wu, H. (2018). Antigen I/II mediates interactions between Streptococcus mutans and Candida albicans. Molecular Oral Microbiology, 33, 283-291. https://doi.org/10.1111/omi.12223
Yoo, H. J., & Jwa, S. K. (2018). Inhibitory effects of upbeta caryophyllene on Streptococcus mutans biofilm. Archives of Oral Biology, 88, 42-46. https://doi.org/10.1016/j.archoralbio.2018.01.009
Zeng, Y., Nikitkova, A., Abdelsalam, H., Li, J., & Xiao, J. (2019). Activity of quercetin and kaemferol against Streptococcus mutans biofilm. Archives of Oral Biology, 98, 9-16. https://doi.org/10.1016/j.archoralbio.2018.11.005
Zhang, K., Ren, B., Zhou, X., Xu, H., Chen, Y., Han, Q., Li, B., Weir, M., Li, M., Feng, M., et al. (2016). Effect of antimicrobial denture base resin on multi species biofilm formation. International Journal of Molecular Sciences, 17, 1033. https://doi.org/10.3390/ijms17071033
Zhao, Z., Ding, C., Wang, Y., Tan, H., & Li, J. (2019). pH responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Biomaterials Science, 7, 1643-1651. https://doi.org/10.1039/C8BM01640B
Recommended articles
Illuminating Biological Dark Matter: Integrating Metagenomics, Synthetic Biology, and AI to Unlock Microbial and Genomic Potential for Therapeutics and Biotechnology
Unlocking Nature’s Pharmacy: A Systematic Review and Meta-Analysis of Bioactive Secondary Metabolites from Microbial, Marine, and Plant Sources
Revolutionizing Healthcare: The Role of Artificial Intelligence in Drug Discovery and Delivery
Article metrics
View details
0
Downloads
0
Citations
19
Views
0
Save
Save
0
Citation
Citation
19
View
View
0
Share
Share