Microbial Bioactives

Microbial Bioactives | Online ISSN 2209-2161
279
Citations
169.9k
Views
157
Articles
Your new experience awaits. Try the new design now and help us make it even better
Switch to the new experience
REVIEWS   (Open Access)

Breaking the Biofilm Barrier: Natural Products, Advanced Therapies, and Emerging Strategies Against Streptococcus mutans–Candida Polymicrobial Oral Biofilms

Abstract 1. Introduction 2. Materials and Methods 3. Results 4.Discussion 5. Limitations 6. Conclusion References

Zubaida Ihsan Thamir 1, Hind Salah Hasan 2*

+ Author Affiliations

Microbial Bioactives 9 (1) 1-8 https://doi.org/10.25163/microbbioacts.9110606

Submitted: 13 October 2025 Revised: 01 January 2026  Accepted: 07 January 2026  Published: 08 January 2026 


Abstract

The global escalation of antimicrobial resistance (AMR) has significantly undermined the effectiveness of conventional antimicrobial therapies, necessitating urgent exploration of alternative treatment strategies. Oral biofilm–associated infections, particularly those driven by polymicrobial consortia of Streptococcus mutans and Candida species, represent a major clinical challenge due to their heightened virulence, metabolic cooperation, and intrinsic resistance to antimicrobial agents. These cross-kingdom biofilms are central to the pathogenesis of dental caries and periodontal disease, conditions that collectively affect billions of individuals worldwide and impose substantial economic and quality-of-life burdens. This systematic review and meta-analytical synthesis evaluates current evidence on novel therapeutic approaches targeting S. mutans–Candida oral biofilms, with a specific focus on natural products, antimicrobial peptides, nanotechnology-based delivery systems, quorum sensing inhibitors, and antimicrobial photodynamic therapy. Emphasis is placed on bioactive compounds derived from underexplored ecological niches, including marine, halophilic, and Antarctic microorganisms, which have demonstrated potent antibiofilm and antimicrobial activities in preclinical models. Using structured literature selection criteria, studies reporting quantitative efficacy metrics such as minimum inhibitory concentration (MIC), minimum biofilm inhibitory concentration (MBIC), and IC50 values were analyzed to compare effect sizes across compound classes. The findings highlight that strategies disrupting extracellular polymeric substance (EPS) matrices, metabolic cooperation, and signaling pathways are consistently more effective than conventional monotherapies. Collectively, this review underscores the therapeutic potential of integrating natural product discovery with advanced biofilm-targeted technologies. It further identifies critical gaps in translational research, emphasizing the need for standardized in vivo models and clinical validation to advance promising antibiofilm agents toward clinical application.

Keywords: Antimicrobial resistance; oral biofilms; Streptococcus mutans; Candida albicans; natural products; antimicrobial peptides; nanotechnology; photodynamic therapy; quorum sensing inhibition

References

Alaoui Mdarhri, H., Benmessaoud, R., Yacoubi, H., Seffar, L., Guennouni Assimi, H., Hamam, M., Boussettine, R., Filali Ansari, N., Lahlou, F. A., Diawara, I., Ennaji, M. M., & Kettani Halabi, M. (2022). Alternatives therapeutic approaches to conventional antibiotics: Advantages, limitations and potential application in medicine. Antibiotics, 11(12), 1826. https://doi.org/10.3390/antibiotics11121826  

Anju, V. T., Busi, S., Imchen, M., Kumavath, R., Mohan, M. S., Salim, S. A., Subhaswaraj, P., & Dyavaiah, M. (2022). Polymicrobial infections and biofilms: Clinical significance and eradication strategies. Antibiotics, 11(12), 1731. https://doi.org/10.3390/antibiotics11121731  

Aristoff, P. A., Garcia, G. A., Kirchhoff, P. D., & Showalter, H. D. (2010). Rifamycins—Obstacles and opportunities. Tuberculosis, 90(2), 94–118. https://doi.org/10.1016/j.tube.2010.02.001

Asencio, G., Lavin, P., Alegría, K., Domínguez, M., Bello, H., González Rocha, G., & González Aravena, M. (2014). Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi resistant Gramnegative bacteria. Electronic Journal of Biotechnology, 17(1), 1-5. https://doi.org/10.1016/j.ejbt.2013.12.001      

Barth, S. A., Preussger, D., Pietschmann, J., Feßler, A. T., Heller, M., Herbst, W., Schnee, C., Schwarz, S., Kloss, F., Berens, C., & Menge, C. (2024). In vitro antibacterial activity of microbial natural products against bacterial pathogens of veterinary and zoonotic relevance. Antibiotics, 13(2), 135. https://doi.org/10.3390/antibiotics13020135     

Bernal, F. A., Hammann, P., & Kloss, F. (2022). Natural products in antibiotic development: Is the success story over? Current Opinion in Biotechnology, 78, 102783.  https://doi.org/10.1016/j.copbio.2022.102783          

Bosi, E., Fondi, M., Orlandini, V., Perrin, E., Maida, I., de Pascale, D., Tutino, M. L., Parrilli, E., Lo Giudice, A., Filloux, A., et al. (2017). The pangenome of (Antarctic) Pseudoalteromonas bacteria: Evolutionary and functional insights. BMC Genomics, 18. https://doi.org/10.1186/s12864-016-3382-y    

Bourgeois, D., David, A., Inquimbert, C., Tramini, P., Molinari, N., & Carrouel, F. (2017). Quantification of carious pathogens in the interdental microbiota of young caries free adults. PLoS ONE, 12, e0185804. https://doi.org/10.1371/journal.pone.0185804       

Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., & Ramakrishnan, V. (2000). The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell, 103(7), 1143–1154. https://doi.org/10.1016/S0092-8674(00)00216-6

Carvalho, M. T. B., Araújo-Filho, H. G., Barreto, A. S., Quintans-Júnior, L. J., Quintans, J. S. S., & Barreto, R. S. S. (2021). Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. Phytomedicine, 90, 153636. https://doi.org/10.1016/j.phymed.2021.153636

Chevalier, M., Ranque, S., & Prêcheur, I. (2017). Oral fungal bacterial biofilm models in vitro: A review. Medical Mycology, 56, 653-667. https://doi.org/10.1093/mmy/myx111     

Chiriac, A. I., Kloss, F., Kramer, J., Vuong, C., Hertweck, C., & Sahl, H. G. (2015). Mode of action of closthioamide: The first member of the polythioamide class of bacterial DNA gyrase inhibitors. Journal of Antimicrobial Chemotherapy, 70(9), 2576–2588. https://doi.org/10.1093/jac/dkv161

Conrado, R., Gomes, T. C., Roque, G. S. C., & De Souza, A. O. (2022). Overview of bioactive fungal secondary metabolites: cytotoxic and antimicrobial compounds. Antibiotics, 11(11), 1604. https://doi.org/10.3390/antibiotics11111604                                   

Corral, P., Amoozegar, M. A., & Ventosa, A. (2019). Halophiles and their biomolecules: Recent advances and future applications in biomedicine. Marine Drugs, 18(1), 33. https://doi.org/10.3390/md18010033           

De Almeida, J., Pimenta, A. L., Pereira, U. A., Barbosa, L. C. A., Hoogenkamp, M. A., van der Waal, S. V., Crielaard, W., & Felippe, W. T. (2018). Effects of three gamma alkylidene gamma lactams on the formation of multispecies biofilms. European Journal of Oral Sciences, 126, 214-221. https://doi.org/10.1111/eos.12411

De Simeis, D., & Serra, S. (2021). Actinomycetes: A never ending source of bioactive compounds-An overview on antibiotics production. Antibiotics, 10(5), 483. https://doi.org/10.3390/antibiotics10050483  

Duque, C., Aida, K. L., Pereira, J. A., Teixeira, G. S., Caldo Teixeira, A. S., Perrone, L. R., Caiaffa, K. S., & de Cássia Negrini, T., et al. (2017). In vitro and in vivo evaluations of glass ionomer cement containing chlorhexidine for atraumatic restorative treatment. Journal of Applied Oral Science, 25, 541-550. https://doi.org/10.1590/1678-7757-2016-0195              

Falsetta, M. L., Klein, M. I., Colonne, P. M., Scott Anne, K., Gregoire, S., Pai, C. H. H., Gonzalez Begne, M., Watson, G., Krysan, D. J., Bowen, W. H., et al. (2014). Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infection and Immunity, 82, 1968-1981. https://doi.org/10.1128/IAI.00087-14              

Feldman, M., Shenderovich, J., Lavy, E., Friedman, M., & Steinberg, D. (2017). Sustained release membrane of thiazolidinedione 8: Effect on formation of a Candida/bacteria mixed biofilm on hydroxyapatite in a continuous flow model. BioMed Research International, 2017, 1-9.  https://doi.org/10.1155/2017/3510124

Floss, H. G., & Yu, T. W. (2005). Rifamycin mode of action, resistance, and biosynthesis. Chemical Reviews, 105(2), 621–632. https://doi.org/10.1021/cr030112j

Forssten, S. D., Björklund, M., & Ouwehand, A. C. (2010). Streptococcus mutans, caries and simulation models. Nutrients, 2, 290-298. https://doi.org/10.3390/nu2030290           

Fumes, A. C., da Silva Telles, P. D., Corona, S. A. M., & Borsatto, M. C. (2018). Effect of aPDT on Streptococcus mutans and Candida albicans present in the dental biofilm: Systematic review. Photodiagnosis and Photodynamic Therapy, 21, 363-366. https://doi.org/10.1016/j.pdpdt.2018.01.013    

He, J., Kim, D., Zhou, X., Ahn, S. J., Burne, R. A., Richards, V. P., & Koo, H. (2017). RNA Seq reveals enhanced sugar metabolism in Streptococcus mutans co cultured with Candida albicans within mixed species biofilms. Frontiers in Microbiology, 8.  https://doi.org/10.3389/fmicb.2017.01036       

Hughes, D., & Andersson, D. I. (2017). Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiology Reviews, 41(4), 374-391.  https://doi.org/10.1093/femsre/fux004      

Hwang, G., Liu, Y., Kim, D., Li, Y., Krysan, D. J., & Koo, H. (2017). Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross kingdom biofilm development in vivo. PLOS Pathogens, 13, e1006407. https://doi.org/10.1371/journal.ppat.1006407 

Kim, D., Liu, Y., Benhamou, R. I., Sanchez, H., Simón Soro, Á., Li, Y., Hwang, G., Fridman, M., Andes, D. R., & Koo, H. (2018). Bacterial derived exopolysaccharides enhance antifungal drug tolerance in a cross kingdom oral biofilm. ISME Journal, 12, 1427-1442. https://doi.org/10.1038/s41396-018-0113-1    

Koo, H., & Bowen, W. H. (2014). Candida albicans and Streptococcus mutans: A potential synergistic alliance to cause virulent tooth decay in children. Future Microbiology, 9, 1295. https://doi.org/10.2217/fmb.14.92     

Krzysciak, W., Koscielniak, D., Papiez, M., Vyhouskaya, P., Zagórska Swiezy, K., Kolodziej, I., Bystrowska, B., & Jurczak, A. (2017). Effect of a Lactobacillus salivarius probiotic on a double species Streptococcus mutans and Candida albicans caries biofilm. Nutrients, 9, 1242. https://doi.org/10.3390/nu9111242 

Lincke, T., Behnken, S., Ishida, K., Roth, M., & Hertweck, C. (2010). Closthioamide: An unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angewandte Chemie International Edition, 49(11), 2011–2013. https://doi.org/10.1002/anie.200906114

Listl, S., Galloway, J., Mossey, P. A., & Marcenes, W. (2015). Global economic impact of dental diseases. Journal of Dental Research, 94, 1355-1361. https://doi.org/10.1177/0022034515602879       

Loesche, W. J. (1986). Role of Streptococcus mutans in human dental decay. Microbiological Reviews, 50, 353-380. https://doi.org/10.1128/mr.50.4.353-380.1986

Macedo, P. D., Corbi, S. T., de Oliveira, G. J. P. L., Perussi, J. R., Ribeiro, A. O., & Marcantonio, R. A. C. (2019). Hypericin glucamine antimicrobial photodynamic therapy in the progression of experimentally induced periodontal disease in rats. Photodiagnosis and Photodynamic Therapy, 25, 43-49 https://doi.org/10.1016/j.pdpdt.2018.11.003              

Manam, R. R., Teisan, S., White, D. J., Nicholson, B., Grodberg, J., Neuteboom, S. T. C., Lam, K. S., Mosca, D. A., Lloyd, G. K., & Potts, B. C. M. (2005). Lajollamycin, a nitro-tetraene spiro-β-lactone-γ-lactam antibiotic from the marine actinomycete Streptomyces nodosus. Journal of Natural Products, 68(2), 240–243. https://doi.org/10.1021/np049725x  

Mangamuri, U. K., Vijayalakshmi, M., Poda, S., Manavathi, B., Chitturi, B., & Yenamandra, V. (2016). Isolation and biological evaluation of N-(4-aminocyclooctyl)-3,5-dinitrobenzamide, a new semisynthetic derivative from the mangrove-associated actinomycete Pseudonocardia endophytica VUK-10. 3 Biotech, 6(2), 158. https://doi.org/10.1007/s13205-016-0472-0         

Mansson, M., Nielsen, R. K., Kjærulff, S., Gotfredsen, C. H., Wietz, M., Ingmer, H., Gram, L., & Larsen, T. O. (2011). Solonamides A and B from Photobacterium halotolerans interfere with quorum sensing in Staphylococcus aureus. Marine Drugs, 9(8), 1446–1456. https://doi.org/10.3390/md9122537

McArthur, K. A., Mitchell, S. S., Tsueng, G., Rheingold, A., White, D. J., Grodberg, J., Lam, K. S., & Potts, B. C. M. (2008). Lynamicins A−E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. Journal of Natural Products, 71(10), 1732–1737. https://doi.org/10.1021/np800286d         

Mendes Gouvêa, C. C., do Amaral, J. G., Fernandes, R. A., Fernandes, G. L., Gorup, L. F., Camargo, E. R., Delbem, A. C. B., & Barbosa, D. B. (2018). Sodium trimetaphosphate and hexametaphosphate impregnated with silver nanoparticles: Characteristics and antimicrobial efficacy. Biofouling, 34, 299-308.  https://doi.org/10.1080/08927014.2018.1437146     

Mitropoulou, G., Stavropoulou, E., Vaou, N., Tsakris, Z., Voidarou, C., Tsiotsias, A., Tsigalou, C., Taban, B. M., Kourkoutas, Y., & Bezirtzoglou, E. (2023). Insights into antimicrobial and anti-inflammatory applications of plant bioactive compounds. Microorganisms, 11(5), 1156. https://doi.org/10.3390/microorganisms11051156

Nelson, M. L., & Levy, S. B. (2011). The history of the tetracyclines. Annals of the New York Academy of Sciences, 1241(1), 17–32. https://doi.org/10.1111/j.1749-6632.2011.06354.x

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41

Pereira, D. F. A., Seneviratne, C. J., Koga Ito, C. Y., & Samaranayake, L. P. (2017). Is the oral fungal pathogen Candida albicans a cariogen? Oral Diseases, 24, 518-526. https://doi.org/10.1111/odi.12691  

Pihlstrom, B. L., Michalowicz, B. S., & Johnson, N. W. (2005). Periodontal diseases. Lancet, 366, 1809-1820. https://doi.org/10.1016/S0140-6736(05)67728-8           

Pires, J. G., Zabini, S. S., Braga, A. S., de Cássia Fabris, R., de Andrade, F. B., de Oliveira, R. C., & Magalhães, A. C. (2018). Hydroalcoholic extracts of Myracrodruon urundeuva All. and Qualea grandiflora Mart. leaves on Streptococcus mutans biofilm and tooth demineralization. Archives of Oral Biology, 91, 17-22. https://doi.org/10.1016/j.archoralbio.2018.04.005       

Rahmani Badi, A., Sepehr, S., & Babaie Naiej, H. (2015). A combination of cis 2 decenoic acid and chlorhexidine removes dental plaque. Archives of Oral Biology, 60, 1655-1661.  https://doi.org/10.1016/j.archoralbio.2015.08.006 

Robertsen, H. L., & Musiol-Kroll, E. M. (2019). Actinomycete-derived polyketides as a source of antibiotics and lead structures for the development of new antimicrobial drugs. Antibiotics, 8(4), 157. https://doi.org/10.3390/antibiotics8040157

Rodrigues, C. F., Boas, D., Haynes, K., & Henriques, M. (2018). The MNN2 gene knockout modulates the antifungal resistance of biofilms of Candida glabrata. Biomolecules, 8, 130.  https://doi.org/10.3390/biom8040130  

Salehi, B., Kregiel, D., Mahady, G., Sharifi Rad, J., Martins, N., & Rodrigues, C. F. (2020). Management of Streptococcus mutans-Candida spp. oral biofilms' infections: Paving the way for effective clinical interventions. Journal of Clinical Medicine, 9(2), 517. https://doi.org/10.3390/jcm9020517  

Shang, D., Liang, H., Wei, S., Yan, X., & Yang, Q., Sun, Y. (2014). Effects of antimicrobial peptide L K6, a temporin 1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti inflammatory activity. Applied Microbiology and Biotechnology, 98, 8685-8695.  https://doi.org/10.1007/s00253-014-5927-9            

Simon, G., Bérubé, C., Voyer, N., & Grenier, D. (2019). Anti biofilm and anti adherence properties of novel cyclic dipeptides against oral pathogens. Bioorganic & Medicinal Chemistry, 27, 2223-2231 https://doi.org/10.1016/j.bmc.2018.11.042

Soria Lozano, P., Gilaberte, Y., Paz Cristóbal, M. P., Pérez Artiaga, L., Lampaya Pérez, V., Aporta, J., Pérez Laguna, V., García Luque, I., Revillo, M. J., & Rezusta, A. (2015). In vitro effect photodynamic therapy with different photosensitizers on cariogenic microorganisms. BMC Microbiology, 15. https://doi.org/10.1186/s12866-015-0524-3            

Souza, J. A. S., Barbosa, D. B., Berretta, A. A., do Amaral, J. G., Gorup, L. F., de Souza Neto, F. N., Fernandes, R. A., & Fernandes, G. L., et al. (2018). Green synthesis of silver nanoparticles combined to calcium glycerophosphate: Antimicrobial and antibiofilm activities. Future Microbiology, 13, 345-357. https://doi.org/10.2217/fmb-2017-0173            

Swanson, R. N., Hardy, D. J., Shipkowitz, N. L., Hanson, C. W., Ramer, N. C., Fernandes, P. B., & Clement, J. J. (1991). In vitro and in vivo evaluation of tiacumicins B and C against Clostridium difficile. Antimicrobial Agents and Chemotherapy, 35(6), 1108–1111. https://doi.org/10.1128/AAC.35.6.1108

Takenaka, S., Ohsumi, T., & Noiri, Y. (2019). Evidence based strategy for dental biofilms: Current evidence of mouthwashes on dental biofilm and gingivitis. Japanese Dental Science Review, 55, 33-40. https://doi.org/10.1016/j.jdsr.2018.07.001      

Tan, Y., Leonhard, M., Moser, D., Ma, S., & Schneider Stickler, B. (2018). Inhibitory effect of probiotic lactobacilli supernatants on single and mixed non albicans Candida species biofilm. Archives of Oral Biology, 85, 40-45. https://doi.org/10.1016/j.archoralbio.2017.10.002         

Trigo Gutierrez, J. K., Sanitá, P. V., Tedesco, A. C., Pavarina, A. C., & de Oliveira Mima, E. G. (2018). Effect of chloroaluminium phthalocyanine in cationic nanoemulsion on photoinactivation of multispecies biofilm. Photodiagnosis and Photodynamic Therapy, 24, 212-218. https://doi.org/10.1016/j.pdpdt.2018.10.005           

Yang, C., Scoffield, J., Wu, R., Deivanayagam, C., Zou, J., & Wu, H. (2018). Antigen I/II mediates interactions between Streptococcus mutans and Candida albicans. Molecular Oral Microbiology, 33, 283-291. https://doi.org/10.1111/omi.12223 

Yoo, H. J., & Jwa, S. K. (2018). Inhibitory effects of upbeta caryophyllene on Streptococcus mutans biofilm. Archives of Oral Biology, 88, 42-46. https://doi.org/10.1016/j.archoralbio.2018.01.009      

Zeng, Y., Nikitkova, A., Abdelsalam, H., Li, J., & Xiao, J. (2019). Activity of quercetin and kaemferol against Streptococcus mutans biofilm. Archives of Oral Biology, 98, 9-16.  https://doi.org/10.1016/j.archoralbio.2018.11.005            

Zhang, K., Ren, B., Zhou, X., Xu, H., Chen, Y., Han, Q., Li, B., Weir, M., Li, M., Feng, M., et al. (2016). Effect of antimicrobial denture base resin on multi species biofilm formation. International Journal of Molecular Sciences, 17, 1033.  https://doi.org/10.3390/ijms17071033              

Zhao, Z., Ding, C., Wang, Y., Tan, H., & Li, J. (2019). pH responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Biomaterials Science, 7, 1643-1651.  https://doi.org/10.1039/C8BM01640B


Article metrics
View details
0
Downloads
0
Citations
19
Views

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
19
View
0
Share