Microbial Bioactives | Online ISSN 2209-2161
REVIEWS   (Open Access)

Microbial Evolution in Microgravity or Space: Understanding Microbial Adaptation and Survival in Space Environments — A Systematic Review

Eliton da Silva Vasconcelos 1*, Juliano de dea Lindner 2

+ Author Affiliations

Microbial Bioactives 8 (1) 1-8 https://doi.org/10.25163/microbbioacts.8110411

Submitted: 20 August 2025 Revised: 15 October 2025  Accepted: 24 October 2025  Published: 26 October 2025 


Abstract

As humanity ventures deeper into space, microorganisms accompany every mission, silently influencing both astronaut wellbeing and spacecraft durability. These tiny travelers, often overlooked, display extraordinary resilience to conditions that would devastate most life on Earth. This review explores how microbes adapt and evolve under the combined stresses of cosmic radiation, microgravity, and the confined, resource-limited environments of spacecraft. Drawing on evidence from spaceflight missions and ground-based simulations, the synthesis reveals a striking pattern of microbial ingenuity. Many species exhibit altered growth behavior, stress resistance, and genetic plasticity—traits that enable them to survive and even thrive in extraterrestrial settings. However, this adaptability comes with risks: increased virulence, antibiotic resistance, and the formation of biofilms that can corrode spacecraft materials and contaminate life-support systems. Yet microbes are not solely adversaries. Their metabolic flexibility also offers promise for bioregenerative life-support, waste recycling, and oxygen production—functions vital for long-term human habitation beyond Earth. The dual nature of microbial presence in space underscores the need for balanced strategies: rigorous contamination control paired with the deliberate use of beneficial strains in sustainable space biotechnologies. Understanding these microbial dynamics is not merely about preventing infection—it is about learning how life, in its smallest forms, endures and transforms amid the vastness of space.

Keywords: Microbial adaptation, space environment, biofilm formation, astronaut health, spacecraft contamination, microgravity, cosmic radiation

References

Abshire, C. F., Prasai, K., Soto, I., Shi, R., Concha, M., Baddoo, M., Flemington, E. K., Ennis, D. G., Scott, R. S., & Harrison, L. (2016). Exposure of Mycobacterium marinum to low-shear modeled microgravity: Effect on growth, the transcriptome and survival under stress. NPJ Microgravity, 2, 16038. https://doi.org/10.1038/npjmgrav.2016.38

Baker, P. W., Meyer, M. L., & Leff, L. G. (2004). Escherichia coli growth under modeled reduced gravity. Microgravity Science and Technology, 15, 39–44. https://doi.org/10.1007/BF02870986

Barros Cortesao Rocha Fernandes, M. F. (2021). Morphological and molecular adaptation of Aspergillus niger to simulated spaceflight and Mars-like conditions (Doctoral dissertation, Georg-August Universität Göttingen).

Bryan, N. C., Lebreton, F., Gilmore, M., Ruvkun, G., Zuber, M. T., & Carr, C. E. (2021). Genomic and functional characterization of Enterococcus faecalis isolates recovered from the International Space Station and their potential for pathogenicity. Frontiers in Microbiology, 11, 515319. https://doi.org/10.3389/fmicb.2020.515319

Cavalier-Smith, T., Brasier, M., & Embley, T. M. (2006). Introduction: How and when did microbes change the world? Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470), 845–850. https://doi.org/10.1098/rstb.2006.1833

Checinska Sielaff, A., Urbaniak, C., Mohan, G. B. M., Stepanov, V. G., Tran, Q., Wood, J. M., Minich, J., McDonald, D., Mayer, T., Knight, R., Karouia, F., Fox, G. E., & Venkateswaran, K. (2019). Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome, 7, 50. https://doi.org/10.1186/s40168-019-0666-x

Cioletti, L. A., Pierson, D. L., & Mishra, S. K. (1991). Microbial growth and physiology in space: A review. SAE Technical Paper Series. https://doi.org/10.4271/911512

Cockell, C. S., Rettberg, P., Rabbow, E., & Olsson-Francis, K. (2011). Exposure of phototrophs to 548 days in low Earth orbit: Microbial selection pressures in outer space and on early Earth. ISME Journal, 5, 1671–1682. https://doi.org/10.1038/ismej.2011.44

Cockell, C. S., Santomartino, R., Finster, K., Waajen, A. C., Eades, L. J., Moeller, R., Rettberg, P., Fuchs, F. M., Van Houdt, R., Leys, N., Coninx, I., ... & Demets, R. (2020). Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nature Communications, 11, 5523. https://doi.org/10.1038/s41467-020-19276-w

Cockell, C., & Horneck, G. (2004). A planetary park system for Mars. Space Policy, 20, 291–295. https://doi.org/10.1016/j.spacepol.2004.06.011

De Vet, S. J., & Rutgers, R. (2007). From waste to energy: First experimental bacterial fuel cells onboard the International Space Station. Microgravity Science and Technology, 19, 225–229. https://doi.org/10.1007/BF02870956

Dedolph, R. R., Oemick, D. A., Wilson, B. R., & Smith, G. R. (1967). Causal basis of gravity stimulus nullification by clinostat rotation. Plant Physiology, 42, 1371–1383. https://doi.org/10.1104/pp.42.9.1371

Deguchi, S., Shimoshige, H., Tsudome, M., Mukai, S. A., Corkery, R. W., Ito, S., & Horikoshi, K. (2011). Microbial growth at hyperaccelerations up to 403,627 × g. Proceedings of the National Academy of Sciences of the United States of America, 108(19), 7997–8002. https://doi.org/10.1073/pnas.1019793108

DeLeon-Rodriguez, N., Lathem, T. L., Rodriguez-R, L. M., Barazesh, J. M., Anderson, B. E., Beyersdorf, A. J., Ziemba, L. D., Bergin, M., Nenes, A., & Konstantinidis, K. T. (2013). Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. Proceedings of the National Academy of Sciences, 110(7), 2575–2580. https://doi.org/10.1073/pnas.1212089110

Fajardo-Cavazos, P., Link, L., Melosh, H. J., & Nicholson, W. L. (2005). Bacillus subtilis spores on artificial meteorites survive hypervelocity atmospheric entry: Implications for lithopanspermia. Astrobiology, 5(6), 726–736. https://doi.org/10.1089/ast.2005.5.726

Fang, A., Pierson, D. L., Koenig, D. W., Mishra, S. K., & Demain, A. L. (1997). Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and on its excretion into the medium. Applied and Environmental Microbiology, 63(10), 4090–4092. https://doi.org/10.1128/aem.63.10.4090-4092.1997

Gao, H., Liu, Z., & Zhang, L. (2011). Secondary metabolism in simulated microgravity and space flight. Protein & Cell, 2(11), 858–861. https://doi.org/10.1007/s13238-011-1103-6

Gardner, J. K., & Herbst-Kralovetz, M. M. (2016). Three-dimensional rotating wall vessel-derived cell culture models for studying virus–host interactions. Viruses, 8(10), 304. https://doi.org/10.3390/v8100304

Gasset, G., Tixador, R., Eche, B., Lapchine, L., Moatti, N., Toorop, P., & Woldringh, C. (1994). Growth and division of Escherichia coli under microgravity conditions. Research in Microbiology, 145(2), 112–120. https://doi.org/10.1016/0923-2508(94)90089-2

Griffin, D. W. (2004). Terrestrial microorganisms at an altitude of 20,000 m in Earth’s atmosphere. Aerobiologia, 20(2), 135–140. https://doi.org/10.1023/B:AERO.0000032948.84077.12

Grimm, D., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., Van Loon, J., Ulbrich, C., Magnusson, N. E., Infanger, M., & Bauer, J. (2014). Growing tissues in real and simulated microgravity: New methods for tissue engineering. Tissue Engineering Part B: Reviews, 20(6), 555–566. https://doi.org/10.1089/ten.teb.2013.0704

Hammond, T. G., & Hammond, J. M. (2001). Optimized suspension culture: The rotating-wall vessel. American Journal of Physiology–Renal Physiology, 281(1), F12–F25. https://doi.org/10.1152/ajprenal.2001.281.1.F12

Hemmersbach, R., Bromeis, B., Block, I., Bräucker, R., Krause, M., Freiberger, N., Stieber, C., & Wilczek, M. (2001). Paramecium—A model system for studying cellular graviperception. Advances in Space Research, 27(5), 893–898. https://doi.org/10.1016/S0273-1177(01)00224-0

Ichijo, T., Yamaguchi, N., Tanigaki, F., Shirakawa, M., & Nasu, M. (2016). Four-year bacterial monitoring in the International Space Station—Japanese experiment module “Kibo” with culture-independent approach. NPJ Microgravity, 2, 16007. https://doi.org/10.1038/npjmgrav.2016.7

Kacena, M. A., Merrell, G. A., Manfredi, B., Smith, E. E., Klaus, D. M., & Todd, P. (1999). Bacterial growth in space flight: Logistic growth curve parameters for Escherichia coli and Bacillus subtilis. Applied Microbiology and Biotechnology, 51(2), 229–234. https://doi.org/10.1007/s002530051386

Kato, Y., Mogami, Y., & Baba, S. A. (2003). Responses to hypergravity in proliferation of Paramecium tetraurelia. Zoological Science, 20(11), 1373–1380. https://doi.org/10.2108/zsj.20.1373

Kawaguchi, Y., Yang, Y., Kawashiri, N., Shiraishi, K., Takasu, M., Narumi, I., Satoh, K., Hashimoto, H., Nakagawa, K., Tanigawa, Y., Momoki, Y. H., Tanabe, M., Sugino, T., Takahashi, Y., Shimizu, Y., Yoshida, S., Kobayashi, K., Yokobori, S. I., & Yamagishi, A. (2013). The possible interplanetary transfer of microbes: Assessing the viability of Deinococcus spp. under the ISS environmental conditions for performing exposure experiments of microbes in the Tanpopo Mission. Origins of Life and Evolution of Biospheres, 43(4–5), 411–428. https://doi.org/10.1007/s11084-013-9345-8

Kawaguchi, Y., Yokobori, S. I., Hashimoto, H., Yano, H., Tabata, M., Kawai, H., & Yamagishi, A. (2016). Investigation of the interplanetary transfer of microbes in the Tanpopo Mission at the exposed facility of the International Space Station. Astrobiology, 16(5), 363–376. https://doi.org/10.1089/ast.2015.1415

Khodadad, C. L., Oubre, C. M., Castro, V. A., Flint, S. M., Roman, M. C., Ott, C. M., & Melendez, O. (2021). A microbial monitoring system demonstrated on the International Space Station provides a successful platform for detection of targeted microorganisms. Life, 11(6), 492. https://doi.org/10.3390/life11060492

Klaus, D., Simske, S., Todd, P., & Stodieck, L. (1997). Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology, 143(2), 449–455. https://doi.org/10.1099/00221287-143-2-449

La Duc, M. T., Sumner, R., Pierson, D., Venkat, P., & Venkateswaran, K. (2004). Evidence of pathogenic microbes in the International Space Station drinking water: Reason for concern? Habitation, 10(1), 39–48. https://doi.org/10.3727/154296604773861842

Litchfield, C. D., & Gillevet, P. M. (2002). Microbial diversity and complexity in hypersaline environments: A preliminary assessment. Journal of Industrial Microbiology & Biotechnology, 28(1), 48–55. https://doi.org/10.1038/sj.jim.7000183

National Research Council. (2006). Preventing the forward contamination of Mars. The National Academies Press. https://doi.org/10.17226/11381

Nickerson, C. A., Ott, C. M., Mister, S. J., et al. (2004). Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infection and Immunity, 72(1), 240–247. https://doi.org/10.1128/IAI.72.1.240-247.2004

Pierson, D. L., Botkin, D. J., Bruce, R. J., & Castro, V. A. (2013). Microbial monitoring of the International Space Station. Advances in Space Research, 31(1), 119–126. https://doi.org/10.1016/S0273-1177(02)00777-8

Yang, Y., Xu, G., Xu, Y., Cheng, X., Xu, S., Chen, S., & Wu, L. (2021). Ceramide mediates radiation-induced germ cell apoptosis via regulating mitochondria function and MAPK factors in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 208, 111579. https://doi.org/10.1016/j.ecoenv.2020.111579


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
46
View
0
Share