The Beneficial Microorganisms for Sustainable Plant Disease Management: A Systematic Review
El-Sayed Abdel-Malek El-Sheikh 1*, Nadia Mohamed Mohamed Shahein 2
Microbial Bioactives 8 (1) 1-8 https://doi.org/10.25163/microbbioacts.8110412
Submitted: 03 February 2025 Revised: 09 April 2025 Accepted: 16 April 2025 Published: 18 April 2025
Abstract
As the environmental and health costs of chemical pesticides continue to rise, agriculture stands at a crossroads—seeking solutions that protect crops without harming the planet. In this context, beneficial microorganisms have emerged as nature’s quiet allies, offering an ecologically balanced path to plant disease management. This systematic review brings together recent research from laboratory experiments, greenhouse trials, and field applications to explore how beneficial bacteria and fungi suppress plant pathogens and enhance crop resilience. The evidence reveals that these microbes employ a remarkable array of strategies—from producing antimicrobial compounds and competing for nutrients to activating plants’ own immune defenses. In real-world settings, microbial inoculants have shown consistent benefits, improving soil health, reducing disease incidence, and stabilizing yields across diverse cropping systems. Yet, their success depends on multiple factors, including climate, soil conditions, and agricultural practices. The review also underscores the importance of understanding long-term ecological effects and ensuring that these innovations are accessible, affordable, and scalable for farmers worldwide. By connecting scientific insight with sustainable practice, this study highlights beneficial microorganisms not merely as tools of pest control, but as integral partners in building a resilient and sustainable agricultural future.
Keywords: Biological control, Plant pathogens, Beneficial microorganisms, Sustainable agriculture, Microbial inoculants.
References
Abbasi, M. W., Ahmed, N., Zaki, M. J., Shuakat, S. S., & Khan, D. (2014). Potential of Bacillus species against Meloidogyne javanica parasitizing eggplant (Solanum melongena L.) and induced biochemical changes. Plant and Soil, 375, 159–173. https://doi.org/10.1007/s11104-013-1931-6
Al-Ani, R. A., Adhab, M. A., Mahdi, M. H., & Abood, H. M. (2012). Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Protection Science, 48(4), 149–155. https://doi.org/10.17221/16/2012-PPS
Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., & Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, 8, 63. https://doi.org/10.1186/1475-2859-8-63
Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology Letters, 32, 1559–1570. https://doi.org/10.1007/s10529-010-0347-0
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
Berry, C. L., Nandi, M., Manuel, J., Brassinga, A. K. C., Fernando, W. D., Loewen, P. C., & de Kievit, T. R. (2014). Characterization of the Pseudomonas sp. DF41 quorum sensing locus and its role in fungal antagonism. Biological Control, 69, 82–89. https://doi.org/10.1016/j.biocontrol.2013.11.005
Bonaterra, A., Badosa, E., Cabrefiga, J., Francés, J., & Montesinos, E. (2012). Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. Trees, 26, 215–226. https://doi.org/10.1007/s00468-011-0626-y
Borisova, S. A., Circello, B. T., Zhang, J. K., van der Donk, W. A., & Metcalf, W. W. (2010). Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633. Chemistry & Biology, 17(1), 28–37. https://doi.org/10.1016/j.chembiol.2009.11.017
Das, S. N., Sarma, P. V., Neeraja, C., Malati, N., & Podile, A. R. (2010). Members of gamma proteobacteria and bacilli represent the culturable diversity of chitinolytic bacteria in chitin-enriched soils. World Journal of Microbiology and Biotechnology, 26, 1875–1881. https://doi.org/10.1007/s11274-010-0369-8
de Weert, S., & Bloemberg, G. V. (2006). Rhizosphere competence and the role of root colonization in biocontrol. In S. S. Gnanamanickam (Ed.), Plant-associated bacteria (pp. 317–333). Dordrecht, NL: Springer. https://doi.org/10.1007/978-1-4020-4538-7_9
Haas, D., & Keel, C. (2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology, 41, 117–153. https://doi.org/10.1146/annurev.phyto.41.052002.095656
Haggag, W. M. (2008). Isolation of bioactive antibiotic peptides from Bacillus brevis and Bacillus polymyxa against Botrytis grey mould in strawberry. Archiv für Phytopathologie und Pflanzenschutz, 41, 477–491. https://doi.org/10.1080/03235400600833704
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56. https://doi.org/10.1038/nrmicro797
Hu, X., Roberts, D. P., Xie, L., Maul, J. E., Yu, C., Li, Y., Jiang, M., Liao, X., Che, Z., & Liao, X. (2014). Formulation of Bacillus subtilis BY-2 suppresses Sclerotinia sclerotiorum on oilseed rape in the field. Biological Control, 70, 54–64. https://doi.org/10.1016/j.biocontrol.2013.12.005
Hussain, M., Zouhar, M., & Ryšánek, M. (2017). Comparison between biological and chemical management of root-knot nematode, Meloidogyne hapla. Pakistan Journal of Zoology, 49, 215–220. https://doi.org/10.17582/journal.pjz/2017.49.1.205.210
Jones, E. E., Rabeendran, N., & Stewart, A. (2014). Biocontrol of Sclerotinia sclerotiorum infection of cabbage by Coniothyrium minitans and Trichoderma spp. Biocontrol Science and Technology, 24, 1363–1382. https://doi.org/10.1080/09583157.2014.940847
Kakembo, D., & Lee, Y. H. (2019). Analysis of traits for biocontrol performance of Pseudomonas parafulva JBCS1880 against bacterial pustule in soybean plants. Biological Control, 134, 72–81. https://doi.org/10.1016/j.biocontrol.2019.04.006
Kang, S. M., Joo, G. J., Hamayun, M., Na, C. I., Shin, D. H., Kim, H. Y., Hong, J. K., & Lee, I. J. (2009). Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters, 31, 277–281. https://doi.org/10.1007/s10529-008-9867-2
Khan, A., Khan, A., Ali, A., Fatima, S., & Siddiqui, M. A. (2023). Root-knot nematodes (Meloidogyne spp.): Biology, plant-nematode interactions and their environmentally benign management strategies. Gesunde Pflanzen, 1–19. https://doi.org/10.1007/s10343-023-00886-5
Kim, Y. S., Song, J. G., Lee, I. K., Yeo, W. H., & Yun, B. S. (2013). Bacillus sp. BS061 suppresses powdery mildew and gray mold. Mycobiology, 41, 108–111. https://doi.org/10.5941/MYCO.2013.41.2.108
Kiriga, A. W., Haukeland, S., Kariuki, G. M., Coyne, D. L., & Beek, N. V. (2018). Effect of Trichoderma spp. and Purpureocillium lilacinum on Meloidogyne javanica in commercial pineapple production in Kenya. Biological Control, 119, 27–32. https://doi.org/10.1016/j.biocontrol.2018.01.005
Kiss, L. (2003). A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Management Science, 59, 475–483. https://doi.org/10.1002/ps.689
Kumar, S., Chauhan, P. S., Agrawal, L., Raj, R., Srivastava, A., Gupta, S., Mishra, K. S., Yadav, S., Singh, P. C., & Raj, S. K. (2016). Paenibacillus lentimorbus inoculation enhances tobacco growth and extenuates the virulence of cucumber mosaic virus. PLOS ONE, 11, e0149980. https://doi.org/10.1371/journal.pone.0149980
La, Y., Feng, X., Wang, X., Zheng, L., & Liu, H. (2020). Inhibitory effects of Bacillus licheniformis BL06 on Phytophthora capsici in pepper by multiple modes of action. Biological Control, 144, 104210. https://doi.org/10.1016/j.biocontrol.2020.104210
Lamont, J. R., Wilkins, O., Bywater-Ekegard, M., & Smith, D. L. (2017). From yogurt to yield: Potential applications of lactic acid bacteria in plant production. Soil Biology and Biochemistry, 111, 1–9. https://doi.org/10.1016/j.soilbio.2017.03.015
Leclère, V., Béchet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M., & Jacques, P. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584. https://doi.org/10.1128/AEM.71.8.4577-4584.2005
Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918
Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125. https://doi.org/10.1016/j.tim.2007.12.009
Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340
Zhang, H., Mahunu, G. K., Castoria, R., Apaliya, M. T., & Yang, Q. (2017). Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. Trends in Food Science & Technology, 69, 36–45. https://doi.org/10.1016/j.tifs.2017.08.020
Zhang, S., & Zhang, X. (2009). Effects of two composted plant pesticide residues, incorporated with Trichoderma viride on root-knot nematode in balloon flower. Agricultural Sciences in China, 8, 447–454. https://doi.org/10.1016/S1671-2927(08)60231-X
Zhao, X., Zhao, X., Wei, Y., Shang, Q., & Liu, Z. (2013). Isolation and identification of a novel antifungal protein from a rhizobacterium Bacillus subtilis strain F3. Journal of Phytopathology, 161, 43–48. https://doi.org/10.1111/jph.12015
Zhou, K., Yamagishi, M., & Osaki, M. (2008). Biocontrol of brown stem rot disease in soybean: Paenibacillus BRF-1 has biocontrol ability against Phialophora gregata disease and promotes soybean growth. Soil Science and Plant Nutrition, 54, 870–875. https://doi.org/10.1111/j.1747-0765.2008.00308.x