References
Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N., Folk, J. C., Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N., & Folk, J. C. (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. Npj Digital Medicine, 1(1), 39. https://doi.org/10.1038/s41746-018-0040-6
Arora, R., Bansal, V., Buckchash, H., Kumar, R., Sahayasheela, V. J., Narayanan, N., Pandian, G. N., & Raman, B. (2021). AI-based diagnosis of COVID-19 patients using X-ray scans with stochastic ensemble of CNNs. Physical and Engineering Sciences in Medicine, 44(4), 1257–1271. https://doi.org/10.1007/s13246-021-01060-9
Aryafar, A., Khosravi, V., Zarepourfard, H., Rooki, R., Aryafar, A., Khosravi, V., Zarepourfard, H., & Rooki, R. (2019). Evolving genetic programming and other AI-based models for estimating groundwater quality parameters of the Khezri plain, Eastern Iran. Environmental Earth Sciences, 78(3). https://doi.org/10.1007/s12665-019-8092-8
Baba, A., & Baba, A. (2021). Advanced AI-based techniques to predict daily energy consumption: A case study. Expert Systems With Applications, 184, 115508. https://doi.org/10.1016/j.eswa.2021.115508
Bashir, A. K., Khan, S., Prabadevi, B., Deepa, N., Alnumay, W. S., Gadekallu, T. R., Maddikunta, P. K. R., Bashir, A. K., Khan, S., Prabadevi, B., Deepa, N., Alnumay, W. S., Gadekallu, T. R., & Maddikunta, P. K. R. (2021). Comparative analysis of machine learning algorithms for prediction of smart grid stability †. International Transactions on Electrical Energy Systems, 31(9). https://doi.org/10.1002/2050-7038.12706
Birkenbihl, C., Emon, M. A., Vrooman, H., Westwood, S., Lovestone, S., Consortium, O. B. O. T. A., Hofmann-Apitius, M., Fröhlich, H., Initiative, A. D. N., Birkenbihl, C., Emon, M. A., Vrooman, H., Westwood, S., Lovestone, S., Hofmann-Apitius, M., & Fröhlich, H. (2020). Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia - lessons for translation into clinical practice. The EPMA Journal, 11(3), 367–376. https://doi.org/10.1007/s13167-020-00216-z
Borchardt, S., Tippenhauer, C., Fricke, P., & Heuwieser, W. (2021). Economic impact of adding a second prostaglandin F2α treatment during an Ovsynch protocol using a meta-analytical assessment and a stochastic simulation model. Journal of Dairy Science, 104(11), 12153–12163. https://doi.org/10.3168/jds.2021-20295
Ceylan, Z., Atalan, A., Ceylan, Z., & Atalan, A. (2020). Estimation of healthcare expenditure per capita of Turkey using artificial intelligence techniques with genetic algorithm-based feature selection. Journal of Forecasting, 40(2), 279–290. https://doi.org/10.1002/for.2747
Dey, B., Bhattacharyya, B., Dey, B., & Bhattacharyya, B. (2018). Dynamic cost analysis of a grid connected microgrid using neighborhood based differential evolution technique. International Transactions on Electrical Energy Systems, 29(1), e2665. https://doi.org/10.1002/etep.2665
Dutta, D., Upreti, S. R., Dutta, D., & Upreti, S. R. (2022). A survey and comparative evaluation of actor-critic methods in process control. The Canadian Journal of Chemical Engineering, 100(9), 2028–2056. https://doi.org/10.1002/cjce.24508
Galvão, K., Federico, P., De Vries, A., & Schuenemann, G. (2013). Economic comparison of reproductive programs for dairy herds using estrus detection, timed artificial insemination, or a combination. Journal of Dairy Science, 96(4), 2681–2693. https://doi.org/10.3168/jds.2012-5982
Ghasemi, M., Zonoozi, M. H., Rezania, N., Saadatpour, M., Ghasemi, M., Zonoozi, M. H., Rezania, N., & Saadatpour, M. (2022). Predicting coagulation–flocculation process for turbidity removal from water using graphene oxide: a comparative study on ANN, SVR, ANFIS, and RSM models. Environmental Science and Pollution Research, 29(48), 72839–72852. https://doi.org/10.1007/s11356-022-20989-2
Giordano, J., Fricke, P., Wiltbank, M., Cabrera, V., Giordano, J., Fricke, P., Wiltbank, M., & Cabrera, V. (2011). An economic decision-making support system for selection of reproductive management programs on dairy farms. Journal of Dairy Science, 94(12), 6216–6232. https://doi.org/10.3168/jds.2011-4376
Godinho, M., Castro, R., Godinho, M., & Castro, R. (2020). Comparative performance of AI methods for wind power forecast in Portugal. Wind Energy, 24(1), 39–53. https://doi.org/10.1002/we.2556
Gupta, N., Khosravy, M., Patel, N., Dey, N., Gupta, S., Darbari, H., Crespo, R. G., Gupta, N., Khosravy, M., Patel, N., Dey, N., Gupta, S., Darbari, H., & Crespo, R. G. (2020). Economic data analytic AI technique on IoT edge devices for health monitoring of agriculture machines. Applied Intelligence, 50(11), 3990–4016. https://doi.org/10.1007/s10489-020-01744-x
Hung, T. N. K., Le, N. Q. K., Le, N. Q. K., Le, N. H., Le, N. H., Van Tuan, L., Nguyen, T. P., Thi, C., Kang, J., Hung, T. N. K., Le, N. Q. K., Le, N. H., Van Tuan, L., Nguyen, T. P., Thi, C., & Kang, J. (2022). An AI-based Prediction Model for Drug-drug Interactions in Osteoporosis and Paget’s Diseases from SMILES. Molecular Informatics, 41(6), e2100264. https://doi.org/10.1002/minf.202100264
Kling, N., Runte, C., Kabiraj, S., Schumann, C., Kling, N., Runte, C., Kabiraj, S., & Schumann, C. (2022). Harnessing sustainable development in image recognition through No-Code AI Applications: A comparative analysis. In Communications in computer and information science (pp. 146–155). https://doi.org/10.1007/978-3-031-07005-1_14
Kumar, C., Singh, B., Kumar, C., & Singh, B. (2022). A comparative study of Machine Learning regression approach on dental caries detection. Procedia Computer Science, 215, 519–528. https://doi.org/10.1016/j.procs.2022.12.054
Lin, W., Lin, S., Yang, T., Lin, W., Lin, S., & Yang, T. (2017). Integrated business prestige and artificial intelligence for corporate decision making in dynamic environments. Cybernetics & Systems, 48(4), 303–324. https://doi.org/10.1080/01969722.2017.1284533
Liyanage, S., Abduljabbar, R., Dia, H., Tsai, P., Liyanage, S., Abduljabbar, R., Dia, H., & Tsai, P. (2022). AI-based neural network models for bus passenger demand forecasting using smart card data. Journal of Urban Management, 11(3), 365–380. https://doi.org/10.1016/j.jum.2022.05.002
Macmillan, K., Boyda, A., Gobikrushanth, M., Plastow, G., Colazo, M., Macmillan, K., Boyda, A., Gobikrushanth, M., Plastow, G., & Colazo, M. (2021). Economic comparison of an ear tag automated activity monitor for estrus detection with timed-AI in Holstein heifers. Theriogenology, 175, 155–162. https://doi.org/10.1016/j.theriogenology.2021.09.009
Mayo, R. C., Kent, D., Sen, L. C., Kapoor, M., Leung, J. W. T., Watanabe, A. T., Mayo, R. C., Kent, D., Sen, L. C., Kapoor, M., Leung, J. W. T., & Watanabe, A. T. (2019). Reduction of False-Positive Markings on Mammograms: a Retrospective Comparison Study Using an Artificial Intelligence-Based CAD. Journal of Digital Imaging, 32(4), 618–624. https://doi.org/10.1007/s10278-018-0168-6
Moon, J., Rho, S., Baik, S. W., Moon, J., Rho, S., & Baik, S. W. (2022). Toward explainable electrical load forecasting of buildings: A comparative study of tree-based ensemble methods with Shapley values. Sustainable Energy Technologies and Assessments, 54, 102888. https://doi.org/10.1016/j.seta.2022.102888
Nguyen, V., Do, P., Voisin, A., & Iung, B. (2022). Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems. Reliability Engineering & System Safety, 228, 108757. https://doi.org/10.1016/j.ress.2022.108757
Qi, C., & Tang, X. (2018). Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study. Computers & Industrial Engineering, 118, 112–122. https://doi.org/10.1016/j.cie.2018.02.028
Rakholia, R., Le, Q., Vu, K., Ho, B. Q., Carbajo, R. S., Rakholia, R., Le, Q., Vu, K., Ho, B. Q., & Carbajo, R. S. (2022). AI-based air quality PM2.5 forecasting models for developing countries: A case study of Ho Chi Minh City, Vietnam. Urban Climate, 46, 101315. https://doi.org/10.1016/j.uclim.2022.101315
Seghier, M. E. a. B., Plevris, V., Solorzano, G., Seghier, M. E. a. B., Plevris, V., & Solorzano, G. (2022). Random forest-based algorithms for accurate evaluation of ultimate bending capacity of steel tubes. Structures, 44, 261–273. https://doi.org/10.1016/j.istruc.2022.08.007
Seya, H., Shiroi, D., Seya, H., & Shiroi, D. (2021). A comparison of residential apartment rent price predictions using a large data set: Kriging versus deep neural network. Geographical Analysis, 54(2), 239–260. https://doi.org/10.1111/gean.12283
Singkibud, P., Sabir, Z., Fathurrochman, I., Alhazmi, S. E., Ali, M. R., Singkibud, P., Sabir, Z., Fathurrochman, I., Alhazmi, S. E., & Ali, M. R. (2022). Swarming morlet wavelet neural network procedures for the mathematical robot system. Informatics in Medicine Unlocked, 33, 101081. https://doi.org/10.1016/j.imu.2022.101081
Sujatha, R., Chatterjee, J. M., Jhanjhi, N., & Brohi, S. N. (2020). Performance of deep learning vs machine learning in plant leaf disease detection. Microprocessors and Microsystems, 80, 103615. https://doi.org/10.1016/j.micpro.2020.103615
Twaha, S., Ramli, M. A., Twaha, S., & Ramli, M. A. (2018). A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustainable Cities and Society, 41, 320–331. https://doi.org/10.1016/j.scs.2018.05.027
Voets, M. M., Veltman, J., Slump, C. H., Siesling, S., & Koffijberg, H. (2021). Systematic Review of Health Economic Evaluations focused on Artificial intelligence in Healthcare: The Tortoise and the Cheetah. Value in Health, 25(3), 340–349. https://doi.org/10.1016/j.jval.2021.11.1362
Zeynoddin, M., Bonakdari, H., Ebtehaj, I., Azari, A., & Gharabaghi, B. (2020). A generalized linear stochastic model for lake level prediction. The Science of the Total Environment, 723, 138015. https://doi.org/10.1016/j.scitotenv.2020.138015