Business and Social Sciences

Business and social sciences | Online ISSN 3067-8919
0
Citations
54k
Views
42
Articles
RESEARCH ARTICLE   (Open Access)

Comparative Econometric Analysis of AI-Based and Stochastic Inventory Optimization for Mitigating Inflationary Supply Shocks

Md Nazmuddin Moin Khan1*, Md. Rezaul Haque2

+ Author Affiliations

Business and Social Sciences 3 (1) 1-8 https://doi.org/10.25163/business.3110484

Submitted: 03 November 2024 Revised: 01 January 2025  Accepted: 08 January 2025  Published: 10 January 2025 


Abstract

Background: The success of inventory management systems depends on their ability to handle supply disruptions which become more complex during periods of changing inflation rates. Traditional stochastic models deliver stability but their adaptability remains restricted because they show delayed responses to actual demand fluctuations.

Methods: The study collected operational metrics through a cross-sectional survey of 270 U.S. supply chain professionals who worked in manufacturing (45.2%) and retail (35.1%) and logistics (14.8%) and wholesale (4.9%) sectors. AI-based and stochastic models were evaluated under 3–15% inflation scenarios. The analysis used Pearson correlation (r) together with regression coefficients (β) and χ² tests and p-values (p=0.05) to measure how each variable affected cost efficiency and forecast accuracy and service-level stability.

Results: AI models consistently outperformed stochastic approaches across all metrics. The efficiency distributions show that AI systems reached forecast accuracy rates of 63% and backorder reduction rates of 62% which exceeded the 37–38% performance of stochastic models. The Pearson correlation analysis revealed strong to moderate connections between inflation rate (r=0.61) and backorder reduction (r=0.62) and inventory turnover (r=0.60). The regression analysis shows AI delivers major cost efficiency improvements through its influence on cost efficiency β= –0.462 while inflation index β=0.291, lead-time variance β=0.179, and service level β=–0.239, generate effects on the results.

Conclusion: AI-based inventory optimization improves responsiveness, reduces costs, and maintains service-level stability under inflationary supply shocks. The system delivers better predictive and adaptive results than stochastic models which help organizations handle their supply chains in real time.

Keywords: Cost Efficiency, AI Inventory Optimization, Service-Level Stability, Stochastic Models, Inflationary Supply Shocks

References

Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N., Folk, J. C., Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N., & Folk, J. C. (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. Npj Digital Medicine, 1(1), 39. https://doi.org/10.1038/s41746-018-0040-6

Arora, R., Bansal, V., Buckchash, H., Kumar, R., Sahayasheela, V. J., Narayanan, N., Pandian, G. N., & Raman, B. (2021). AI-based diagnosis of COVID-19 patients using X-ray scans with stochastic ensemble of CNNs. Physical and Engineering Sciences in Medicine, 44(4), 1257–1271. https://doi.org/10.1007/s13246-021-01060-9

Aryafar, A., Khosravi, V., Zarepourfard, H., Rooki, R., Aryafar, A., Khosravi, V., Zarepourfard, H., & Rooki, R. (2019). Evolving genetic programming and other AI-based models for estimating groundwater quality parameters of the Khezri plain, Eastern Iran. Environmental Earth Sciences, 78(3). https://doi.org/10.1007/s12665-019-8092-8

Baba, A., & Baba, A. (2021). Advanced AI-based techniques to predict daily energy consumption: A case study. Expert Systems With Applications, 184, 115508. https://doi.org/10.1016/j.eswa.2021.115508

Bashir, A. K., Khan, S., Prabadevi, B., Deepa, N., Alnumay, W. S., Gadekallu, T. R., Maddikunta, P. K. R., Bashir, A. K., Khan, S., Prabadevi, B., Deepa, N., Alnumay, W. S., Gadekallu, T. R., & Maddikunta, P. K. R. (2021). Comparative analysis of machine learning algorithms for prediction of smart grid stability †. International Transactions on Electrical Energy Systems, 31(9). https://doi.org/10.1002/2050-7038.12706

Birkenbihl, C., Emon, M. A., Vrooman, H., Westwood, S., Lovestone, S., Consortium, O. B. O. T. A., Hofmann-Apitius, M., Fröhlich, H., Initiative, A. D. N., Birkenbihl, C., Emon, M. A., Vrooman, H., Westwood, S., Lovestone, S., Hofmann-Apitius, M., & Fröhlich, H. (2020). Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia - lessons for translation into clinical practice. The EPMA Journal, 11(3), 367–376. https://doi.org/10.1007/s13167-020-00216-z

Borchardt, S., Tippenhauer, C., Fricke, P., & Heuwieser, W. (2021). Economic impact of adding a second prostaglandin F2α treatment during an Ovsynch protocol using a meta-analytical assessment and a stochastic simulation model. Journal of Dairy Science, 104(11), 12153–12163. https://doi.org/10.3168/jds.2021-20295

Ceylan, Z., Atalan, A., Ceylan, Z., & Atalan, A. (2020). Estimation of healthcare expenditure per capita of Turkey using artificial intelligence techniques with genetic algorithm-based feature selection. Journal of Forecasting, 40(2), 279–290. https://doi.org/10.1002/for.2747

Dey, B., Bhattacharyya, B., Dey, B., & Bhattacharyya, B. (2018). Dynamic cost analysis of a grid connected microgrid using neighborhood based differential evolution technique. International Transactions on Electrical Energy Systems, 29(1), e2665. https://doi.org/10.1002/etep.2665

Dutta, D., Upreti, S. R., Dutta, D., & Upreti, S. R. (2022). A survey and comparative evaluation of actor-critic methods in process control. The Canadian Journal of Chemical Engineering, 100(9), 2028–2056. https://doi.org/10.1002/cjce.24508

Galvão, K., Federico, P., De Vries, A., & Schuenemann, G. (2013). Economic comparison of reproductive programs for dairy herds using estrus detection, timed artificial insemination, or a combination. Journal of Dairy Science, 96(4), 2681–2693. https://doi.org/10.3168/jds.2012-5982

Ghasemi, M., Zonoozi, M. H., Rezania, N., Saadatpour, M., Ghasemi, M., Zonoozi, M. H., Rezania, N., & Saadatpour, M. (2022). Predicting coagulation–flocculation process for turbidity removal from water using graphene oxide: a comparative study on ANN, SVR, ANFIS, and RSM models. Environmental Science and Pollution Research, 29(48), 72839–72852. https://doi.org/10.1007/s11356-022-20989-2

Giordano, J., Fricke, P., Wiltbank, M., Cabrera, V., Giordano, J., Fricke, P., Wiltbank, M., & Cabrera, V. (2011). An economic decision-making support system for selection of reproductive management programs on dairy farms. Journal of Dairy Science, 94(12), 6216–6232. https://doi.org/10.3168/jds.2011-4376

Godinho, M., Castro, R., Godinho, M., & Castro, R. (2020). Comparative performance of AI methods for wind power forecast in Portugal. Wind Energy, 24(1), 39–53. https://doi.org/10.1002/we.2556

Gupta, N., Khosravy, M., Patel, N., Dey, N., Gupta, S., Darbari, H., Crespo, R. G., Gupta, N., Khosravy, M., Patel, N., Dey, N., Gupta, S., Darbari, H., & Crespo, R. G. (2020). Economic data analytic AI technique on IoT edge devices for health monitoring of agriculture machines. Applied Intelligence, 50(11), 3990–4016. https://doi.org/10.1007/s10489-020-01744-x

Hung, T. N. K., Le, N. Q. K., Le, N. Q. K., Le, N. H., Le, N. H., Van Tuan, L., Nguyen, T. P., Thi, C., Kang, J., Hung, T. N. K., Le, N. Q. K., Le, N. H., Van Tuan, L., Nguyen, T. P., Thi, C., & Kang, J. (2022). An AI-based Prediction Model for Drug-drug Interactions in Osteoporosis and Paget’s Diseases from SMILES. Molecular Informatics, 41(6), e2100264. https://doi.org/10.1002/minf.202100264

Kling, N., Runte, C., Kabiraj, S., Schumann, C., Kling, N., Runte, C., Kabiraj, S., & Schumann, C. (2022). Harnessing sustainable development in image recognition through No-Code AI Applications: A comparative analysis. In Communications in computer and information science (pp. 146–155). https://doi.org/10.1007/978-3-031-07005-1_14

Kumar, C., Singh, B., Kumar, C., & Singh, B. (2022). A comparative study of Machine Learning regression approach on dental caries detection. Procedia Computer Science, 215, 519–528. https://doi.org/10.1016/j.procs.2022.12.054

Lin, W., Lin, S., Yang, T., Lin, W., Lin, S., & Yang, T. (2017). Integrated business prestige and artificial intelligence for corporate decision making in dynamic environments. Cybernetics & Systems, 48(4), 303–324. https://doi.org/10.1080/01969722.2017.1284533

Liyanage, S., Abduljabbar, R., Dia, H., Tsai, P., Liyanage, S., Abduljabbar, R., Dia, H., & Tsai, P. (2022). AI-based neural network models for bus passenger demand forecasting using smart card data. Journal of Urban Management, 11(3), 365–380. https://doi.org/10.1016/j.jum.2022.05.002

Macmillan, K., Boyda, A., Gobikrushanth, M., Plastow, G., Colazo, M., Macmillan, K., Boyda, A., Gobikrushanth, M., Plastow, G., & Colazo, M. (2021). Economic comparison of an ear tag automated activity monitor for estrus detection with timed-AI in Holstein heifers. Theriogenology, 175, 155–162. https://doi.org/10.1016/j.theriogenology.2021.09.009

Mayo, R. C., Kent, D., Sen, L. C., Kapoor, M., Leung, J. W. T., Watanabe, A. T., Mayo, R. C., Kent, D., Sen, L. C., Kapoor, M., Leung, J. W. T., & Watanabe, A. T. (2019). Reduction of False-Positive Markings on Mammograms: a Retrospective Comparison Study Using an Artificial Intelligence-Based CAD. Journal of Digital Imaging, 32(4), 618–624. https://doi.org/10.1007/s10278-018-0168-6

Moon, J., Rho, S., Baik, S. W., Moon, J., Rho, S., & Baik, S. W. (2022). Toward explainable electrical load forecasting of buildings: A comparative study of tree-based ensemble methods with Shapley values. Sustainable Energy Technologies and Assessments, 54, 102888. https://doi.org/10.1016/j.seta.2022.102888

Nguyen, V., Do, P., Voisin, A., & Iung, B. (2022). Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems. Reliability Engineering & System Safety, 228, 108757. https://doi.org/10.1016/j.ress.2022.108757

Qi, C., & Tang, X. (2018). Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study. Computers & Industrial Engineering, 118, 112–122. https://doi.org/10.1016/j.cie.2018.02.028

Rakholia, R., Le, Q., Vu, K., Ho, B. Q., Carbajo, R. S., Rakholia, R., Le, Q., Vu, K., Ho, B. Q., & Carbajo, R. S. (2022). AI-based air quality PM2.5 forecasting models for developing countries: A case study of Ho Chi Minh City, Vietnam. Urban Climate, 46, 101315. https://doi.org/10.1016/j.uclim.2022.101315

Seghier, M. E. a. B., Plevris, V., Solorzano, G., Seghier, M. E. a. B., Plevris, V., & Solorzano, G. (2022). Random forest-based algorithms for accurate evaluation of ultimate bending capacity of steel tubes. Structures, 44, 261–273. https://doi.org/10.1016/j.istruc.2022.08.007

Seya, H., Shiroi, D., Seya, H., & Shiroi, D. (2021). A comparison of residential apartment rent price predictions using a large data set: Kriging versus deep neural network. Geographical Analysis, 54(2), 239–260. https://doi.org/10.1111/gean.12283

Singkibud, P., Sabir, Z., Fathurrochman, I., Alhazmi, S. E., Ali, M. R., Singkibud, P., Sabir, Z., Fathurrochman, I., Alhazmi, S. E., & Ali, M. R. (2022). Swarming morlet wavelet neural network procedures for the mathematical robot system. Informatics in Medicine Unlocked, 33, 101081. https://doi.org/10.1016/j.imu.2022.101081

Sujatha, R., Chatterjee, J. M., Jhanjhi, N., & Brohi, S. N. (2020). Performance of deep learning vs machine learning in plant leaf disease detection. Microprocessors and Microsystems, 80, 103615. https://doi.org/10.1016/j.micpro.2020.103615

Twaha, S., Ramli, M. A., Twaha, S., & Ramli, M. A. (2018). A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems. Sustainable Cities and Society, 41, 320–331. https://doi.org/10.1016/j.scs.2018.05.027

Voets, M. M., Veltman, J., Slump, C. H., Siesling, S., & Koffijberg, H. (2021). Systematic Review of Health Economic Evaluations focused on Artificial intelligence in Healthcare: The Tortoise and the Cheetah. Value in Health, 25(3), 340–349. https://doi.org/10.1016/j.jval.2021.11.1362

Zeynoddin, M., Bonakdari, H., Ebtehaj, I., Azari, A., & Gharabaghi, B. (2020). A generalized linear stochastic model for lake level prediction. The Science of the Total Environment, 723, 138015. https://doi.org/10.1016/j.scitotenv.2020.138015


View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
54
View
0
Share