References
Agarwal, U., Rishiwal, V., Yadav, M., Aslhammari, M., Yadav, P., Singh, O., & Maurya, V. (2024). Exploring Blockchain and Supply Chain Integration: State-of-the-Art, Security Issues and Emerging Directions. IEEE Access.
Aloun, M. S. (2024). Synergistic Integration of Artificial Intelligence and Blockchain Technology: Advancements, Applications, and Future Directions. Journal of Intelligent Systems and Applied Data Science, 2(2).
Asante, M., Epiphaniou, G., Maple, C., Al-Khateeb, H., Bottarelli, M., & Ghafoor, K. Z. (2021). Distributed ledger technologies in supply chain security management: A comprehensive survey. IEEE Transactions on Engineering Management, 70(2), 713-739.
Avinash, B., & Joseph, G. (2024). Reimagining healthcare supply chains: a systematic review on digital transformation with specific focus on efficiency, transparency and responsiveness. Journal of Health Organization and Management, 38(8), 1255-1279.
Baah, C., Acquah, I. S. K., & Ofori, D. (2022). Exploring the influence of supply chain collaboration on supply chain visibility, stakeholder trust, environmental and financial performances: a partial least square approach. Benchmarking: An International Journal, 29(1), 172-193.
Baumann, M. (2021). Improving a rule-based fraud detection system with classification based on association rule mining. In INFORMATIK 2021 (pp. 1121-1134). Gesellschaft für Informatik, Bonn.
Belchior, R., Vasconcelos, A., Guerreiro, S., & Correia, M. (2021). A survey on blockchain interoperability: Past, present, and future trends. Acm Computing Surveys (CSUR), 54(8), 1-41.
Bello, H. O., Idemudia, C., & Iyelolu, T. V. (2024). Integrating machine learning and blockchain: Conceptual frameworks for real-time fraud detection and prevention. World Journal of Advanced Research and Reviews, 23(1), 056-068.
Beteto, A., Melo, V., Lin, J., Alsultan, M., Dias, E. M., Korte, E., ... & Lambert, J. H. (2022). Anomaly and cyber fraud detection in pipelines and supply chains for liquid fuels. Environment Systems and Decisions, 42(2), 306-324.
Chaney, M. T. (2023). Benchmarking Lamb Carcass Traits and Exploring Lamb Sausage Marketability (Master's thesis, North Dakota State University).
Chit, I., & Vasudevan, R. (2024). Navigating Compliance: Strategic Approaches Across Industries An Examination of Organizational Structures and Responses to Regulatory Changes.
Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions–A review. Concurrency and Computation: Practice and Experience, 35(22), e7724.
Das, D. (2024). Design of Blockchain-Enabled Secure Real Life Applications (Doctoral dissertation, Indian Statistical Institute, Kolkata).
Dave, D. M. K., & Mittapally, B. K. (2024). Data Integration and Interoperability in IoT: Challenges, Strategies and Future Direction. Int. J. Comput. Eng. Technol.(IJCET), 15, 45-60.
Fährmann, D., Martín, L., Sánchez, L., & Damer, N. (2024). Anomaly detection in smart environments: a comprehensive survey. IEEE access.
Forichi, M. T. (2019). Sustainability innovation in the food industry: blockchain technology’s potential role in addressing social sustainability challenges in cocoa bean production.
Garcia-Torres, S., Rey-Garcia, M., & Sáenz, J. (2024). Enhancing sustainable supply chains through traceability, transparency and stakeholder collaboration: A quantitative analysis. Business Strategy and the Environment, 33(7), 7607-7629.
Glaviano, F., Esposito, R., Cosmo, A. D., Esposito, F., Gerevini, L., Ria, A., ... & Zupo, V. (2022). Management and sustainable exploitation of marine environments through smart monitoring and automation. Journal of Marine Science and Engineering, 10(2), 297.
Guo, Z., Tan, T., Liu, S., Liu, X., Lai, W., Yang, Y., ... & Zhou, Y. (2023). Mitigating false positive static analysis warnings: Progress, challenges, and opportunities. IEEE Transactions on Software Engineering, 49(12), 5154-5188.
Harris, L. (2024). The Role of Artificial Intelligence in Advancing Blockchain Technology.
Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial fraud: a review of anomaly detection techniques and recent advances. Expert systems With applications, 193, 116429.
Hossain, M. I., Steigner, T., Hussain, M. I., & Akther, A. (2024). Enhancing data integrity and traceability in industry cyber physical systems (ICPS) through Blockchain technology: A comprehensive approach. arXiv preprint arXiv:2405.04837.
Islam, M. M., Hossain, M. S., Ali, M., & Hossain, M. S. (2024). Analysing the impact of socioeconomic factors on diabetes prevalence and healthcare access in rural America. Journal of Population Therapeutics and Clinical Pharmacology, 31(6), 3630–3647.
Islam, M. M., Zerine, I., Rahman, M. A., Islam, M. S., & Ahmed, M. Y. (2024). AI-driven fraud detection in financial transactions – Using machine learning and deep learning to detect anomalies and fraudulent activities in banking and e-commerce transactions. International Journal of Communication Networks and Information Security (IJCNIS), 16(5), 927–944.
Kulothungan, V. (2024, October). A Blockchain-Enabled Approach to Cross-Border Compliance and Trust. In 2024 IEEE 6th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA) (pp. 446-454). IEEE.
Lin, M. A. (2024). The Effect of Reliability of Autonomous Systems on Automation-Induced Complacency, Hazard Monitoring, and Workload (Master's thesis, California State University, Long Beach).
Loncarevic, M. (2023). Internal Audit in the Age of Blockchain-based Decentralized Autonomous Organizations. epubli.
Man, Y., Lundh, M., & MacKinnon, S. N. (2018). Towards a pluralistic epistemology: understanding human-technology interactions in shipping from psychological, sociological and ecological perspectives. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 12(4), 795-811.
Mubarik, M. S., & Khan, S. A. (2024). Future of digital supply chain management. In The Theory, Methods and Application of Managing Digital Supply Chains (pp. 163-178). Emerald Publishing Limited.
Nweje, U. (2024). Blockchain Technology for Secure Data Integrity and Transparent Audit Trails in Cybersecurity. Int. J. Res. Publ. Rev, 5(12), 4902-4916.
Nweje, U. (2024). Blockchain Technology for Secure Data Integrity and Transparent Audit Trails in Cybersecurity. Int. J. Res. Publ. Rev, 5(12), 4902-4916.
Onabowale, O. (2024). AI and Machine Learning in Fraud Detection: Transforming Financial Security.
Politou, E., Casino, F., Alepis, E., & Patsakis, C. (2019). Blockchain mutability: Challenges and proposed solutions. IEEE Transactions on Emerging Topics in Computing, 9(4), 1972-1986.
Prosper, J. (2024). Shaping the Future of Data Security using AI and Blockchain.
Rehan, H. (2021). Leveraging AI and cloud computing for Real-Time fraud detection in financial systems. Journal of Science & Technology, 2(5), 127.
Samuels, J. I. (2024). Unraveling the Dynamics and Impacts of Financial Sabotage: A Comprehensive Analysis.
Scheid, E. J., Rodrigues, B. B., Killer, C., Franco, M. F., Rafati, S., & Stiller, B. (2021). Blockchains and distributed ledgers uncovered: clarifications, achievements, and open issues. In Advancing Research in Information and Communication Technology: IFIP's Exciting First 60+ Years, Views from the Technical Committees and Working Groups (pp. 289-317). Cham: Springer International Publishing.
Tyagi, P., Shrivastava, N., Sakshi, & Jain, V. (2024). Synergizing Artificial Intelligence and Blockchain. In Next-Generation Cybersecurity: AI, ML, and Blockchain (pp. 83-97). Singapore: Springer Nature Singapore.
Vazquez Melendez, E. I., Bergey, P., & Smith, B. (2024). Blockchain technology for supply chain provenance: increasing supply chain efficiency and consumer trust. Supply Chain Management: An International Journal, 29(4), 706-730.
Virkkunen, O. (2024). Promoting supply chain transparency and circularity with the EU Digital Product Passport.
Vizarreta, P., Trivedi, K., Mendiratta, V., Kellerer, W., & Mas-Machuca, C. (2020). Dason: Dependability assessment framework for imperfect distributed sdn implementations. IEEE Transactions on Network and Service Management, 17(2), 652-667.
Zerine, I., Rahman, T., Ahmad, M. Y., Biswas, Y. A., & Islam, M. M. (2025). Enhancing public health supply chain forecasting using machine learning for crisis preparedness and system resilience. International Journal of Communication Networks and Information Security (IJCNIS), 17(4), 82–98.