References
Alexis, F., Pridgen, E. M., Langer, R., & Farokhzad, O. C. (2010). Nanoparticle technologies for cancer therapy. In Handbook of Experimental Pharmacology (pp. 55–86). https://doi.org/10.1007/978-3-642-00477-3_2
Berg, S. L., Tolcher, A., O’Shaughnessy, J. A., Denicoff, A. M., Noone, M., et al. (1995). Effect of R-verapamil on the pharmacokinetics of paclitaxel in women with breast cancer. Journal of Clinical Oncology, 13, 2039–2042. https://doi.org/10.1200/JCO.1995.13.8.2039
Bhardwaj, V., Ankola, D. D., Gupta, S., Schneider, M., Lehr, C. M., et al. (2009). PLGA nanoparticles stabilized with cationic surfactant: Safety studies and application in oral delivery of paclitaxel to treat chemical-induced breast cancer in rat. Pharmaceutical Research, 26, 2495–2503. https://doi.org/10.1007/s11095-009-9965-4
Chakravarthi, S. S., & Robinson, D. H. (2011). Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles. International Journal of Pharmaceutics, 409, 111–120. https://doi.org/10.1016/j.ijpharm.2011.02.034
Chen, G., Roy, I., Yang, C., & Prasad, P. (2020). Nanochemistry and nanomedicine for nanoparticle-based targeted drug delivery. Chemical Reviews, 120(5), 8814-8872. https://doi.org/10.1021/acs.chemrev.9b00881
Danhier, F., Lecouturier, N., Vroman, B., Jérôme, C., Marchand-Brynaert, J., et al. (2009). Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. Journal of Controlled Release, 133, 11–17. https://doi.org/10.1016/j.jconrel.2008.09.086
Dong, Y., & Feng, S. S. (2007). Poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. International Journal of Pharmaceutics, 342, 208–214. https://doi.org/10.1016/j.ijpharm.2007.04.031
Fonseca, C., Simões, S., & Gaspar, R. (2002). Paclitaxel-loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vitro anti-tumoral activity. Journal of Controlled Release, 83, 273–286. https://doi.org/10.1016/s0168-3659(02)00212-2
Fracasso, P. M., Westervelt, P., Fears, C. L., Rosen, D. M., Zuhowski, E. G., et al. (2000). Phase I study of paclitaxel in combination with a multidrug resistance modulator, PSC 833 (Valspodar), in refractory malignancies. Journal of Clinical Oncology, 18, 1124–1134. https://doi.org/10.1200/JCO.2000.18.5.1124
Gallo, J. M., Li, S., Guo, P., Reed, K., & Ma, J. (2003). The effect of P-glycoprotein on paclitaxel brain and brain tumor distribution in mice. Cancer Research, 63, 5114–5117.
Gelderblom, H., Verweij, J., Nooter, K., & Sparreboom, A. (2001). Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. European Journal of Cancer, 37, 1590–1598. https://doi.org/10.1016/s0959-8049(01)00171-x
Haley, B., & Frenkel, E. (2008). Nanoparticles for drug delivery in cancer treatment. Urology Oncology, 26, 57–64. https://doi.org/10.1016/j.urolonc.2007.03.015
Jain, R. K., & Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature Reviews Clinical Oncology, 7, 653–664. https://doi.org/10.1038/nrclinonc.2010.139
Jiang, X., Liu, L., & Guo, X. (2020). Overcoming the tumor microenvironment: Paclitaxel nanoparticles with penetration capabilities. Advanced Drug Delivery Reviews, 159, 28-41. https://doi.org/10.1016/j.addr.2020.03.007
Jin, C., Bai, L., Wu, H., Liu, J., Guo, G., et al. (2008). Paclitaxel-loaded poly(D,L-lactide-co-glycolide) nanoparticles for radiotherapy in hypoxic human tumor cells in vitro. Cancer Biology & Therapy, 7, 911–916. https://doi.org/10.4161/cbt.7.6.5912
Jin, C., Bai, L., Wu, H., Song, W., Guo, G., et al. (2009). Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharmaceutical Research, 26, 1776–1784. https://doi.org/10.1007/s11095-009-9889-z
Jin, C., Wu, H., Liu, J., Bai, L., & Guo, G. (2007). The effect of paclitaxel-loaded nanoparticles with radiation on hypoxic MCF-7 cells. Journal of Clinical Pharmacy and Therapeutics, 32, 41–47. https://doi.org/10.1111/j.1365-2710.2007.00796.x
Jordan, M. A., & Wilson, L. (2004). Microtubules as a target for anticancer drugs. Nature Reviews Cancer, 4, 253–265. https://doi.org/10.1038/nrc1317
Kim, B. S., Kim, C. S., & Lee, K. M. (2008). The intracellular uptake ability of chitosan-coated poly(D,L-lactide-co-glycolide) nanoparticles. Archives of Pharmacal Research, 31, 1050–1054. https://doi.org/10.1007/s12272-001-1267-5
Kumar, A., Jena, S., & Khan, F. (2022). Biocompatible and biodegradable nanoparticles for paclitaxel delivery: Advances and challenges. Journal of Pharmaceutical Sciences, 111(3), 892-907. https://doi.org/10.1016/j.xphs.2021.12.025
Li, H., Zhang, M., & Wang, Y. (2019). Nanoparticle delivery systems for paclitaxel: A comprehensive review. Journal of Controlled Release, 310, 73-89. https://doi.org/10.1016/j.jconrel.2019.08.009
Shen, Z., Chen, T., & Shi, Y. (2021). Overcoming multidrug resistance in cancer therapy: Current strategies and emerging trends. Cancer Letters, 512, 20-34. https://doi.org/10.1016/j.canlet.2021.07.010
Sparreboom, A., van Tellingen, O., Nooijen, W. J., & Beijnen, J. H. (1996). Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Research, 56, 2112–2115.
Storm, G., Belliot, S. O., Daemen, T., & Lasic, D. D. (1995). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews, 17, 31–48.
Sun, T., Zhang, L., & Wang, C. (2020). Theranostic applications of nanoparticles in cancer treatment. Molecular Pharmaceutics, 17(6), 1878-1894. https://doi.org/10.1021/acs.molpharmaceut.0c00075
Suri, S. S., Fenniri, H., & Singh, B. (2007). Nanotechnology-based drug delivery systems. Journal of Occupational Medicine and Toxicology, 2, 16. https://doi.org/10.1186/1745-6673-2-16
Wang, J., Sui, M., & Fan, W. (2010). Nanoparticles for tumor targeted therapies and their pharmacokinetics. Current Drug Metabolism, 11, 129–141. https://doi.org/10.2174/138920010791110827
Wang, Z., Zhang, Q., & He, X. (2021). Nanoparticle stability and drug release mechanisms in paclitaxel delivery. Drug Delivery and Translational Research, 11(2), 298-307. https://doi.org/10.1007/s13346-020-00799-3
Zhang, Z., Liu, H., & Li, J. (2020). Targeted delivery of paclitaxel using ligand-conjugated nanoparticles: An update. Journal of Nanobiotechnology, 18, 123. https://doi.org/10.1186/s12951-020-00762-4
Zhou, X., Wang, Y., & Li, W. (2021). Drug resistance in cancer: Current approaches and challenges in paclitaxel delivery. Advanced Drug Delivery Reviews, 170, 174-195. https://doi.org/10.1016/j.addr.2021.05.007