Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Impact of Smoking on Hematologic and Biochemical Predictors of Coronary Artery Disease in Iraqi Male Population

Elham Hazeim Abdulkareem 1*, Thana Ismail Mustafa 2, Dhyauldeen Aftan Al Hayani 3

+ Author Affiliations

Journal of Angiotherapy 8 (7) 1-7 https://doi.org/10.25163/angiotherapy.879805

Submitted: 14 May 2024 Revised: 22 July 2024  Published: 23 July 2024 


Abstract

Background: Smoking is a well-known risk factor for coronary artery disease (CAD) and other cardiovascular conditions, including coronary heart disease (CHD). Blood cell components and biomarkers such as white blood cells (WBCs), haemoglobin (Hb), fibrinogen, high-sensitivity C-reactive protein (hs-CRP), D-dimer, and ferritin have been implicated in the pathogenesis of CAD. This study aimed to identify key predictors of CAD in smokers by assessing these hematologic and biochemical parameters. Methods: This study included male smokers with hypertension, excluding those with diabetes or dyslipidaemia, and compared them to a control group of healthy nonsmokers. Parameters assessed included complete blood count (CBC) and blood-based biomarkers (hs-CRP, D-dimer, fibrinogen, and ferritin). The predictive value of the fibrinogen-to-D-dimer ratio was also analyzed. Statistical analysis was conducted using GraphPad Prism 9.5.0 with a 95% confidence level. Results: Significant differences were observed between smokers and nonsmokers in WBC count, Hb level, and packed cell volume (PCV). Smokers exhibited higher levels of hs-CRP, fibrinogen, D-dimer, and ferritin. However, the fibrinogen-to-D-dimer ratio was not a significant predictor of CAD. Conclusion: The study found that elevated WBC count, Hb level, PCV, and biomarkers (hs-CRP, D-dimer, fibrinogen, ferritin) are strong predictors of CAD in smokers. These findings suggest the potential for developing a predictive panel for CAD risk in smokers, though the study's small sample size is a limitation.

Keywords: Smoking, Coronary Artery Disease, Hematologic Biomarkers, Biochemical Predictors, Inflammation

References


Al-Dahy, L. B., & Abed, F. A. (2022). Effect of smoking on D-dimer level at COVID-19 patients. Indian Journal of Forensic Medicine & Toxicology, 16, 299–302. https://doi.org/10.37506/ijfmt.v16i4.18603

Ambrose, J. A., & Barua, R. S. (2004). The pathophysiology of cigarette smoking and cardiovascular disease: An update. Journal of the American College of Cardiology, 43(1731–1737). https://doi.org/10.1016/j.jacc.2003.12.047

Araujo, L. F., de Matos Soeiro, A. D. M., Fernandes, J. L., Pesaro, A. E., & Serrano, C. V. (2006). Coronary artery disease in women: A review on prevention, pathophysiology, diagnosis, and treatment. Vascular Health and Risk Management, 2(465–475). https://doi.org/10.2147/vhrm.2006.2.4.465

Azdaki, N., Salmani, F., Kazemi, T., Partovi, N., Bizhaem, S. K., Moghadam, M. N., & et al. (2024). Which risk factor best predicts coronary artery disease using artificial neural network method? BMC Medical Informatics and Decision Making, 24(52). https://doi.org/10.1186/s12911-024-02442-1

Azdaki, N., Zardast, M., Anani-Sarab, G., Abdorrazaghnaejad, H., Ghasemian, M. R., & Saburi, A. (2017). Comparison between homocysteine, fibrinogen, PT, PTT, INR, and CRP in male smokers with/without addiction to opium. Addiction & Health, 9, 17–23.

Bai, Y., Zheng, Y.-Y., Tang, J.-N., Yang, X.-M., Guo, Q.-Q., Zhang, J.-C., & et al. (2020). D-dimer to fibrinogen ratio as a novel prognostic marker in patients after undergoing percutaneous coronary intervention: A retrospective cohort study. Clinical and Applied Thrombosis/Hemostasis, 26(1076029620948586). https://doi.org/10.1177/1076029620948586

Batta, A. (2015). Evaluation of D-dimer and CRP in cases of atherosclerosis (CAD). International Journal of Biological & Medical Research, 6, 5258–5266.

Bouabdallaoui, N., Messas, N., Greenlaw, N., Ferrari, R., Ford, I., Fox, K. M., & et al. (2021). Impact of smoking on cardiovascular outcomes in patients with stable coronary artery disease. European Journal of Preventive Cardiology, 28(1460–1466). https://doi.org/10.1177/2047487320918728

Brown, J. C., Gerhardt, T. E., & Kwon, E. (2024). Risk factors for coronary artery disease. In StatPearls. StatPearls Publishing.

Chen, S., Yang, F., Xu, T., Wang, Y., Zhang, K., Fu, G., & et al. (2023). Smoking and coronary artery disease risk in patients with diabetes: A Mendelian randomization study. Frontiers in Immunology, 14(891947). https://doi.org/10.3389/fimmu.2023.891947

Cho, H. M., Kang, D. R., Kim, H. C., Oh, S. M., Kim, B.-K., & Suh, I. (2015). Association between fibrinogen and carotid atherosclerosis according to smoking status in a Korean male population. Yonsei Medical Journal, 56, 921–927. https://doi.org/10.3349/ymj.2015.56.4.921

Çiftçiler, R., Güven, A., Haznedaroglu, I. C., & Aksu, S. (2019). Effects of smoking on hematological parameters and ferritin levels. Haseki, 57(372–376). https://doi.org/10.4274/haseki.galenos.2019.4927

Dabbagh, M., Radwan, M. M., Parra, D. B., Kodoth, V., Liu, T., Ghanta, R. K., & et al. (2023). Evaluating the effect of smoking cessation on coronary artery calcification: A systematic review and meta-analysis. JACC: Cardiovascular Imaging, 16(210–219). https://doi.org/10.1016/j.jcmg.2022.09.011

Danesh, J., Collins, R., Appleby, P., & Peto, R. (1998). Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: Meta-analyses of prospective studies. JAMA, 279, 1477–1482. https://doi.org/10.1001/jama.279.18.1477

Danesh, J., Wheeler, J. G., Hirschfield, G. M., Eda, S., Eiriksdottir, G., Rumley, A., & et al. (2004). C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. The New England Journal of Medicine, 350, 1387–1397. https://doi.org/10.1056/NEJMoa032804

Danesh, J., Whincup, P., Walker, M., Lennon, L., Thomson, A., Appleby, P., & et al. (2001). Fibrin D-dimer and coronary heart disease: Prospective study and meta-analysis. Circulation, 103, 2323–2327. https://doi.org/10.1161/01.CIR.103.19.2323

Duncan, M. S., Greevy, R. A., Tindle, H. A., Vasan, R. S., Lipworth, L., Aldrich, M. C., & et al. (2022). Inclusion of smoking data in cardiovascular disease risk estimation. JAMA Cardiology, 7(195–203). https://doi.org/10.1001/jamacardio.2021.4990

Dwivedi, S., & Jhamb, R. (2010). Cutaneous markers of coronary artery disease. World Journal of Cardiology, 2(262–269). https://doi.org/10.4330/wjc.v2.i9.262

Gong, P., Yang, S.-H., Li, S., Luo, S.-H., Zeng, R.-X., Zhang, Y., & et al. (2016). Plasma D-dimer as a useful marker predicts severity of atherosclerotic lesion and short-term outcome in patients with coronary artery disease. Clinical and Applied Thrombosis/Hemostasis, 22, 633–640. https://doi.org/10.1177/1076029616634885

Hosseini, K., Mortazavi, S. H., Sadeghian, S., Ayati, A., Nalini, M., Aminorroaya, A., & et al. (2021). Prevalence and trends of coronary artery disease risk factors and their effect on age of diagnosis in patients with established coronary artery disease: Tehran Heart Center (2005–2015). BMC Cardiovascular Disorders, 21(477). https://doi.org/10.1186/s12872-021-02293-y

Indrajaya, T., Ghanie, A., & Arman, A. (2020). Accuracy of fibrinogen/D-dimer ratio in predicting the occurrence of coronary slow flow phenomenon. Open Access Macedonian Journal of Medical Sciences, 8, 1229–1233. https://doi.org/10.3889/oamjms.2020.5542

Jeong, H. J., Park, H.-B., Kim, H.-J., Seo, Y.-S., Cho, Y.-H., Choi, T.-Y., & et al. (2017). Smoking as a key predictor of CAD among asymptomatic and extremely low coronary artery calcium score patients. Journal of the American College of Cardiology, 69(1554). https://doi.org/10.1016/S0735-1097(17)34943-4

Jiang, Y., Pang, T., Shi, R., Qian, W. L., Yan, W. F., Li, Y., & et al. (2021). Effect of smoking on coronary artery plaques in type 2 diabetes mellitus: Evaluation with coronary computed tomography angiography. Frontiers in Endocrinology, 12(750773). https://doi.org/10.3389/fendo.2021.750773

Khera, A. V., Emdin, C. A., Drake, I., Natarajan, P., Bick, A. G., Cook, N. R., & et al. (2016). Genetic risk, adherence to a healthy lifestyle, and coronary disease. The New England Journal of Medicine, 375(2349–2358). https://doi.org/10.1056/NEJMoa1605086

Koenig, W., Rothenbacher, D., Hoffmeister, A., Griesshammer, M., & Brenner, H. (2001). Plasma fibrin D-dimer levels and risk of stable coronary artery disease: Results of a large case-control study. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1701–1705. https://doi.org/10.1161/hq1001.097020

Lee, Y.-A., Kang, S.-G., Song, S.-W., Rho, J.-S., & Kim, E.-K. (2015). Association between metabolic syndrome, smoking status and coronary artery calcification. PLOS ONE, 10(e0122430). https://doi.org/10.1371/journal.pone.0122430

Lima dos Santos, C. C., Matharoo, A. S., Pinzón Cueva, E., Amin, U., Perez Ramos, A. A., Mann, N. K., & et al. (2023). The influence of sex, age, and race on coronary artery disease: A narrative review. Cureus, 15(e47799). https://doi.org/10.7759/cureus.47799

Lowe, G. D. O., & Rumley, A. (1999). Use of fibrinogen and fibrin D-dimer in prediction of arterial thrombotic events. Thrombosis and Haemostasis, 82, 667–672. https://doi.org/10.1055/s-0037-1615895

Madjid, M., & Fatemi, O. (2013). Components of the complete blood count as risk predictors for coronary heart disease: In-depth review and update. Texas Heart Institute Journal, 40(17–29).

Maresca, G., Di Blasio, A., Marchioli, R., & Di Minno, G. (1999). Measuring plasma fibrinogen to predict stroke and myocardial infarction: An update. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 1368–1377. https://doi.org/10.1161/01.atv.19.6.1368

Meneke, E., & Emin Düz, M. (2023). Changes in D-dimer, ferritin, and fibrinogen in healthy smokers and nonsmokers during the COVID-19 outbreak. Journal of Surgical Research, 06. https://doi.org/10.26502/jsr.10020281

Neaton, J. D., & Wentworth, D. (1992). Serum cholesterol, blood pressure, cigarette smoking, and death from coronary heart disease overall findings and differences by age for 316,099 white men. Archives of Internal Medicine, 152(56–64). https://doi.org/10.1001/archinte.1992.00400130082009

Oshunbade, A. A., Kassahun-Yimer, W., Valle, K. A., Hamid, A., Kipchumba, R. K., Kamimura, D., & et al. (2021). Cigarette smoking, incident coronary heart disease, and coronary artery calcification in black adults: The Jackson Heart study. Journal of the American Heart Association, 10(e017320). https://doi.org/10.1161/JAHA.120.017320

Platek, A. E., & Szymanska, J. (2020). Impact of smoking and non-smoking on dental treatment needs: A cross-sectional study. European Journal of Dentistry, 14(405–410). https://doi.org/10.1055/s-0040-1708554

Ralapanawa, U., & Sivakanesan, R. (2021). Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: A narrative review. Journal of Epidemiology and Global Health, 11(169–177). https://doi.org/10.2991/jegh.k.201217.001

Reyes, C., Pons, N. A., Reñones, C. R., Gallisà, J. B., Val, V. A., Tebé, C., & et al. (2020). Association between serum ferritin and acute coronary heart disease: A population-based cohort study. Atherosclerosis, 293, 69–74. https://doi.org/10.1016/j.atherosclerosis.2019.12.011

Salimi, A., Zolghadrasli, A., Jahangiri, S., Hatamnejad, M. R., Bazrafshan, M., Izadpanah, P., & et al. (2023). The potential of HEART score to detect the severity of coronary artery disease according to SYNTAX score. Scientific Reports, 13, 7228. https://doi.org/10.1038/s41598-023-34213-9

Shivasekar, M., Vm, V., & Y, R. K. (2018). Study of serum ferritin in smokers. Asian Journal of Pharmaceutical and Clinical Research, 11, 374. https://doi.org/10.22159/ajpcr.2018.v11i1.21502

Soomro, A. Y., Guerchicoff, A., Nichols, D. J., Suleman, J., & Dangas, G. D. (2016). The current role and future prospects of D-dimer biomarker. European Heart Journal: Cardiovascular Pharmacotherapy, 2, 175–184. https://doi.org/10.1093/ehjcvp/pvv039

Sung, K.-C., Kang, S.-M., Cho, E.-J., Park, J. B., Wild, S. H., & Byrne, C. D. (2012). Ferritin is independently associated with the presence of coronary artery calcium in 12,033 men. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 2525–2530. https://doi.org/10.1161/ATVBAHA.112.253088

Vanassche, T., Verhamme, P., Anand, S. S., Shestakovska, O., Fox, K. A., Bhatt, D. L., & et al. (2020). Risk factors and clinical outcomes in chronic coronary and peripheral artery disease: An analysis of the randomized, double-blind COMPASS trial. European Journal of Preventive Cardiology, 27(296–307). https://doi.org/10.1177/2047487319882154

Wilson, P. W. F., D’Agostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H., & Kannel, W. B. (1998). Prediction of coronary heart disease using risk factor categories. Circulation, 97(1837–1847). https://doi.org/10.1161/01.CIR.97.18.1837

Wong, Y.-K., & Tse, H.-F. (2021). Circulating biomarkers for cardiovascular disease risk prediction in patients with cardiovascular disease. Frontiers in Cardiovascular Medicine, 8, 713191. https://doi.org/10.3389/fcvm.2021.713191

Wu, H.-P., Jan, S.-L., Chang, S.-L., Huang, C.-C., & Lin, M.-J. (2022). Correlation between smoking paradox and heart rhythm outcomes in patients with coronary artery disease receiving percutaneous coronary intervention. Frontiers in Cardiovascular Medicine, 9(803650). https://doi.org/10.3389/fcvm.2022.803650

Zakynthinos, E., & Pappa, N. (2009). Inflammatory biomarkers in coronary artery disease. Journal of Cardiology, 53, 317–333. https://doi.org/10.1016/j.jjcc.2008.12.007

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
483
View

Share